You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 5 Next »

Overview

Code Example

Copy and paste the following code into tf-profile.py.

from datetime import datetime
import os
import tensorflow

from tensorflow.keras.datasets import mnist
from tensorflow import keras
from tensorflow.keras import layers

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

model = keras.Sequential([
    layers.Dense(512, activation="relu"),
    layers.Dense(10, activation="softmax")
])

model.compile(optimizer="rmsprop",
              loss="sparse_categorical_crossentropy",
              metrics=["accuracy"])

train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype("float32") / 255
test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype("float32") / 255

# Create a TensorBoard callback
logs = "logs/" + datetime.now().strftime("%Y%m%d-%H%M%S")

tboard_callback = tensorflow.keras.callbacks.TensorBoard(log_dir = logs,
                                                 histogram_freq = 1,
                                                 profile_batch = '10,20')

model.fit(train_images, 
          train_labels, 
          epochs=10, 
          batch_size=128, 
          callbacks = [tboard_callback])

Local Profiling

Remote Profiling


  • No labels