
Analysis Framework Developer's Guide
Analysis Framework Developer's Guide
There are four steps required to add an Analysis to the Analysis Framework. Before these steps, you need to have a working MAEviz development

. Also, if the new analysis uses any new data schemas, you must define them following the steps of . When environment Creating new Dataset schemas
following these steps, it will be helpful to refer to the example of the standard Bridge Damage analysis in the plugin. For each ncsa.maeviz.bridges
step, follow the link to the section below for the low-level details.

Step One: Create the #Analysis Description

First, one must create a new Analysis Description file for the Analysis. This will require knowledge of the parameters, outputs, and runtime requirements of
the Analysis to be implemented. Generally, this file is placed in a folder called which sits in the root of the defining plugin, and is named to descriptions
match the analysis name, such as . See the section for detail of how to write this file, and the syntax used BridgeDamage.xml #Analysis Description
within.

Step Two: Create the #Task

Second, one must implement the Analysis as a Task. Pick the appropriate base class and implement the required methods. Remember that the keys given
to the parameters in the Analysis Description must match the methods in this class. Also, the column names given to the outputs must match the set
values given in the schema for the specific dataset type. The section below gives details of how to extend the base class, and what java methods #Task
you must define.

Step Three: Register with the extension point#ncsa.analysis.newAnalyses

Third, register this extension. Remember that the id here must match the id given in the Analysis Description and the tag must match the tag in the #ncsa.
 extension point.tools.ogrescript.ogreTasks

Step Four: Register with the extension point.#ncsa.tools.ogrescript.ogreTasks

Lastly, register the Task with this extension point. Remember that the tag here must match the tag given in the ncsa.analysis.newAnalyses
extension point above.

Analysis Description

The Analysis Description file provides detailed information about the various sections of an Analysis. It is defined by using the following tags:

<analysis-description>

Attributes

NAME DEFAULT VALUE DESCRIPTION

id (required) This id MUST match the id given to the Analysis in the extension point.ncsa.analysis.newAnalyses

help-context (optional - no default) Assigns a help context id to this analysis.

Elements

NAME REQUIRED CARDINALITY DESCRIPTION

<analysis-type> (required) 1

<custom-script> (optional) 0-1

<groups> (required) 1

<parameter> (optional)* 0*-many

<output> (optional) 0-many

Text

This element has no text.

<analysis-type>

Attributes

https://wiki.ncsa.illinois.edu/display/MAE/MAEviz+development+environment
https://wiki.ncsa.illinois.edu/display/MAE/MAEviz+development+environment
https://wiki.ncsa.illinois.edu/display/MAE/Creating+new+Dataset+schemas

NAME DEFAULT VALUE DESCRIPTION

type (required) Defines how this analysis is to be executed, currently supports simpleIteration

Elements

NAME REQUIRED CARDINALITY DESCRIPTION

<property> (optional) 0-many a object. Additional properties required by the type of iterator.ncsa.tools.common.Property

Text

This element has no text.

Example

<analysis-type type="simpleIteration">
 <property name="iteratingDatasetKey" value="bridgeDamage" />
</analysis-type>

<custom-script>

Attributes

This element has no attributes.

Elements

This element has no children.

Text

Defines a location for a custom OgreScript to use instead of auto-generating one. The format for this script will be defined on a separate page. This
location is relative to the bundle in which the analysis is shipped.

Example

<custom-script>scripts/ogrescript-bridgeFunc.xml</custom-script>

<groups>

The elements are currently unused by the analysis system. To place parameters in groups, use in the parameter <groups> group="groupName"
element.

<parameter>

A element with key is required. This is the only way to change a for a given output.parameter <outputKey>.resultName resultName

<parameter key="mappingResult.resultName" phylum="string" cardinality="single" friendly-name="Result Name" />

...

<output friendly-name="Mapping Result" key="mappingResult" phylum="dataset">
...

Attributes

NAME DEFAULT
VALUE

DESCRIPTION

group (unused) a string which must match a member of above --<groups> currently unused

format shapefile the format of whatever phylum of parameter this is. For datasets, indicates what type of dataset (mapping,
shapefile,etc)

phylum (required) the type of the parameter, currently supports , , or booleanstring dataset

cardinality (required) how many of this type, currently supports or single multiple

key (required) name of property for which value should be added

friendly-
name

{required) name of property for which value should be added

optional false A value of denotes that this parameter need not have a valuetrue

advanced false A value of denotes that this is an advanced parametertrue

Elements

NAME REQUIRED CARDINALITY DESCRIPTION

<types> (optional) 0-many A list of types that are accepted by this .<parameter>

<description> (optional) 1 A textual description of the parameter. Mostly used to generate tooltips in the UI.

Text

This element has no text.

Example

<parameter group="Required" format="dataset" cardinality="single" key="functionalityTable" friendly-name="
Functionality Table">
 <types>
 <type>bridgeFunctionality</type>
 </types>
</parameter>

Syntax for various parameter widget types

A list of the various parameter widget types available, and an example for each, can be found on the page.Parameter Widget Examples

<output>

An of type requires two elements.<output> dataset <property>

base-dataset-key - The key of the which is the base for this new Dataset<parameter>
schema - The id of the schema that this Dataset implements.

Attributes

NAME DEFAULT VALUE DESCRIPTION

format (required) the format of the parameter, currently supports or string dataset

key (required) name of property for which value should be added. No spaces allowed.

friendly-name {required) name of property for which value should be added

Elements

NAME REQUIRED CARDINALITY DESCRIPTION

<property> (optional) 0-many a object. Additional properties required by the .ncsa.tools.common.Property <output>

Text

This element has no text.

Example

https://wiki.ncsa.illinois.edu/display/MAE/Parameter+Widget+Examples

<output friendly-name="Bridge Functionality" key="bridgeFunctionality" format="dataset">
 <property name="base-dataset-key" value="bridgeDamage" />
 <property name="schema" value="ncsa.maeviz.schemas.bridgeFunctionalityResults.v1.0" />
</output>

Task class

Each Analysis MUST implement a class which extends or ncsa.analysis.maeviz.ogrescript.tasks.core.SimpleFeatureTask ncsa.
. If the Task class generate more then one feature, the later class analysis.maeviz.ogrescript.tasks.core.SimpleFeatureCollectionTask

must be used. In the future a choice of base class based on the specific implementation required will be available.

There are two required abstract methods.

protected abstract void preProcess() throws ScriptExecutionException;
protected abstract void handleFeature(IProgressMonitor monitor) throws ScriptExecutionException;

Requirements

For each there must be a corresponding method which corresponds to the attribute in the .<parameter> set key <parameter>

Example:

<parameter group="Required" format="dataset" cardinality="single" key="functionalityTable" friendly-name="
Functionality Table" />

public void setFunctionalityTable(Dataset d);

The method is responsible for two things. First is computing the values that are to be added to the new Feature. Second is to populate handleFeature
the .resultMap

Example:

resultMap.put(COL_LS_SLIGHT, dmg[0]);
resultMap.put(COL_LS_MODERATE, dmg[1]);

Note: if the class extends SimpleFeatureCollectionTask, the member, which is a LinkedList of , must be used to store the resultMapList resultMap
result of each feature in feature colleciton.

As a best practice, add constants for each column in the Feature. These column names MUST match the fields as defined in the public final static
 for the created dataset.gisSchema

ncsa.analysis.newAnalyses extension point

Each Analysis must register an extension with the extension point. This registration allows the Analysis Framework to ncsa.analysis.newAnalyses
find all Analyses automatically.

NAME DEFAULT VALUE DESCRIPTION

id (required) This id MUST match the id given in the <analysis-description>

name (required) This is the "friendly name" of the Analysis and should be i18n

tag (required) The tag MUST match the tag in the extension point. No spaces allowed.ncsa.tools.ogrescript.ogreTasks

descriptor (required) This points to the descriptor file.

ncsa.tools.ogrescript.ogreTasks extension point

Each Analysis must register its implementing class with the extension point.ncsa.tools.ogrescript.ogreTasks

NAME DEFAULT VALUE DESCRIPTION

id (required) This id SHOULD match the fully qualified class name of the task

name (required) This is the "friendly name" of the Task and should be i18n

tag (required) The tag MUST match the tag in the extension point. No spaces allowed.ncsa.analysis.newAnalyses

class (required) This points to implementing class.

	Analysis Framework Developer's Guide

