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Slide 1: Cartographic Foundation…

Since, several students in our class did not have solid cartographic foundation, we needed to get everyone at the same level. We felt that a number of the topics 

covered in Chapter 7 of Peterson’s text were appropriate here.

 
Slide 2: Cartographic Foundation Topics

Those of you with a solid cartography background will have had much of this, but remember that we have a broad group of folks enrolled in this course; I 

suspect that a fair number of students have only touched on some of these issues

Most of you have done some work with scale, but a few have not

A discussion of Map Projections is critical because of the use of the Web Mercator in Web Mapping

 Data Classification is necessary because we will be working with classed and unclassed maps and   need to understand the impact of choosing 

various methods of classification or possibly choosing no classification (the unclassed map)

Linear Simplification – When working with large datasets, it is often useful to simplify lines

 
Slide 3: Map Scale Issues
 
Slide 4: Three ways of depicting map scale; the first of these is the Representative Fraction (RF)

This simply says that one unit on the map = 24,000 units on the Earth or ground

Or we could say that one inch on the map = 24,000 inches on the ground

Or if we are not in the U.S. one centimeter = 24,000 centimeters on the ground

Peterson notes that there are only three countries where English units are used; although according to a Wikipedia article on Metrication in the 

United States, the U.S. is now the only country using the English system

We can argue that the RF is a bit abstract because what does 24,000 centimeters or inches represent?

 
Slide 5: Three ways of depicting map scale; the second of these is the Verbal Scale

This clearly tells us what one inch represents

 
Slide 6: Three ways of depicting map scale; the third of these is the Bar Scale…

Slide 7: Examples of Bar Scales
Note that this image comes from Chapter 11 of my co-authored book. Hugh Howard, one of my co-authors wrote this chapter, and I happen to think it is quite 

well done. As you use various software to create scales, read Hugh’s chapter to see what should and should not be done.

Hugh indicates those in D are good examples, describing them as “slender, simple, and well-designed”

C is also a possibility – it uses an extension to the left of zero, but Hugh argues that the extension is confusing to map readers and probably should 

not be used on thematic maps

 
Slide 8: Bad Examples of Bar Scales

I suspect that you probably won’t be designing bar scales in this class, but as you work with maps in other classes and use various software, think about the 

design of your scales

 
Slide 9: Bar scales can be used as map scale changes

Think about the size of map on this screen; does the distance from here to here represent 800 miles? If I show this map in another room, say 412, will the same 

hold true?

Yes to both

In contrast the representative fraction and verbal scales will not generally be meaningful.

In our world of Web mapping, we should be using bar scales!

 
Slide 10: Large scale vs. small scale maps.

Have them define these

Is there a particular scale that separates large and small scale maps?



1/50,000 and larger are often considered large scale

1/250,000 and smaller are often considered small scale

Between 1/50,000 and 1/250,000 intermediate scale

 
Slide 11: Distance Measurements

Although map service providers often provide automated procedures for measuring distance, we also should be able to compute distance by hand

Let’s consider a typical problem…

What do we know?

1 cm on map = 24,000 cm on the Earth (this is the RF)

Thus, 5 cm on the map = 24,000 * 5 = 120,000 cm on the Earth

Converting to kilometers, we divide cm by 100,000, we get 1.2 km

Slide 12: Distance Measurements (in English units)
What do we know?

1 inch = 30,000 inches

Thus, 2.2 inches = 2.2 * 30,000 = 66,000 inches

Converting to miles, we divide by 63,360 to get 1.04 miles

 
Slide 13: Computing an RF for a Bar Scale

What do we know?

3.3 inches on the map = 5 miles on the Earth

Thus, 3.3 inches on map = 5 * 63,360 inches = 316800 inches on Earth

Dividing through by 3.3, we have

One inch on map = 96000 inches on Earth

So this is a 1:96,000 map

 
Slide 14: Map Projections
 
Slide 15: Definition

Stress that we are going from a curved 3D surface to a 2D surface and thus we must lose something

We cannot maintain correct areal relations, angles, distances, and directions at the same time

We can maintain these on a globe, but globes are cumbersome

These ideas are easiest to see if we exam maps that do preserve certain characteristics…

 
Slide 16: Equal-area or equivalent projection

Maintains correct areal relationships

By this we mean that if two areas have a particular areal relationship on the 3D globe, they will have the same relationship on the 2D map (i.e. if 

one area is twice as large as another on the globe, it will be twice as large on the 2D map)

This a map of literacy rates by country at a world scale; note that areal relations are correct (e.g., compare South America vs. Greenland)

This is a thematic choropleth map in which countries are shaded with an intensity proportional to literacy; by using an equivalent projection, we weight each 

country correctly (based on its actual size on the globe)

Slide 17: Conformal projection
Maintains angular relationships around points

One way of thinking about this is that lines of latitude and longitude intersect each other at right angles on the globe and they do that here

BUT we can see that there is gross distortion of area

Greenland and Antartica are now huge. In this case they fall in the “ no data” category, but it doesn’t make sense that they should have this visual 

impact

Ignoring Greenland and Antarctica, much of the world seems to fall in the black because the northern latitudes are exaggerated

Rather than using the Mercator for thematic info like this, the Mercator should be used for navigation

 
Slide 18: Mollweide vs. Mercator

Looking at both maps, we see that low literacy rates are a more apparent problem with the Mollweide projection



 
Slide 19: Areal vs conformal and dot mapping

This is a fictitious data set. The left map is an equal-areal projection and the right map is a conformal projection. The true density is greatly distorted on the 

conformal. The density will appear less in areas where the areas are greatly exaggerated.

 
Slide 20: Equidistant projection

Equidistant projections show distances correctly…

The azimuthal equidistant is an example

 In this case correct distances are maintained from the center of the projection (along the Kansas-Nebraska border) to surrounding areas of the world

 
Slide 21: Azimuthal projection

Show directions correctly from a point

More specifically, these projections measure direction correctly from the center of the map to any other point on the map

Note that the previous projection is both equidistant and azimuthal; in general , this is not necessarily true; here we see one (the orthographic) that is just 

azimuthal.

Also note these last two categories (equidistant and azimuthal) generally are not as important in thematic cartography as the other two (equal-area and 

conformal).

Slide 22: Why the Mercator projection for the Web?
Here we have combined the reasons provided by Peterson and Battersby et al. (Peterson is the textbook for the course; Battersby et al. is the article referred to 

in the course syllabus)

1 and 2 (Peterson covers)

2 and 3 (Battersby et al. cover)

One of the difficulties of fully understanding this is that we are not writing the code for tiling and panning and zooming

These all deal with speed of processing, which of course we want to be as fast as possible

 
 Slide 23: Why Web Mercator?

The justifications listed in the previous slide focus on why the Mercator projection is used on the Web. We now ask why a particular version of the Mercator 

 known as Web Mercator is used?

Stress that they should read Battersby et al.

We have read Battersby, but also discussed this with Kessler, who is a specialist in projections

The key is that the approach used for Web Mercator is computationally faster than if Mercator were used

Ellipsoidal coordinates are the basic Earth coordinates that are normally used

For example, when you use a GPS device

When these coordinates are projected, one should use ellipsoidal equations, BUT Google and other use spherical equations (they 

assume the Earth is a perfect sphere, which of course it is not)

The spherical equations are simpler and more efficient, but they lead to error

 
 Slide 24: Shows the error when overlaying the two systems (Mercator and Web Mercator are overlaid)

At this scale, there appears to be no error

 
Slide 25: Shows the actual magnitude of error between Mercator and Web Mercator

Note how the error is small near the equator and then increases as we move away from the equator

Note that 30Km relative to 12,500 miles is not much; that’s why we didn’t see error clearly on the previous slide

Slide 26: Winkel Tripel: An Example of a compromise projection
Equal area projections maintain correct area relations, but they distort angles. In contrast, conformal projections maintain correct angular relations, but distort 

area relations.

Can we somehow compromise?

Yes, there are a number of projections that are neither equal area nor conformal. The Robinson projection is one that Peterson mentions and is a 

well known projection. The Winkel Tripel is a more recently developed compromise projection.

This image also shows the area and angular distortion using Tissot’s indicatrix. If there is no areal or angular distortion, all of the ellipses shown 

would be circles of the same size. Obviously, this is not possible.



The greater the difference in area, the greater the areal distortion.

The greater the difference from a circle, the greater the angular distortion.

 
Slide 27: Data Classification

We group our raw data into classes and then use separate symbols to represent each class…

 
Slide 28: Why do we class data?

Normally, data classification is discussed in the context of choropleth maps. Here we see classed and unclassed maps of foreign-owned agricultural as a 

percentage of all privately owned land.

Classed is map on the left. We’ve divided the data into five classes

Unclassed is map on the right. Data are shaded with a gray directly proportional to the data.

Normally, we say that the right-hand map is too difficult to interpret because we can’t easily differentiate the shades and it is difficult to match 

them up with shades in the legend.

However, note in the dispersion graph at the bottom that the data value for Maine is appreciably different from the rest of the data and that this is 

reflected in the map.

In this sense the unclassed map is a visual expression of what we see in the dispersion graph.

BUT most folks have chosen to class their data…

 
 Slide 29: Some methods of classification

There are lots of other methods; we cover some of the more commonly used methods…

 
Slide 30: Equal Interval Method

Places an equal portion of the data range in each class

Imagine a dataset of % urban ranging from 0-100 and 5 classes; each class would span an interval of 20%.

Many of you have learned this in your stats class and so this should seem straightforward.

It is a five-step process

 
Slides 31-32: Step 1. Determine the class interval…

Note the sample data set below

 
Slide 33: Step 2. Determine the upper limit of each class.

Simply add the class interval to the smallest data value and then repeat… You should end up with the highest value in the data.

 
Slide 34: Step 3. Determine the lower limit of each class.

Note that this is one unit higher than the upper limit of the preceding class.

 
Slide 35: Specify the class limits actually shown in the legend.

These should be in the same precision as your original data. So for Exercise 3, report final classes to tenths.

 
Slide 36: Determine which observations fall in each class.
 
Slide 37: Advantages of equal interval
 
Slide 38: Key disadvantage of equal interval

The key disadvantage is that class limits may not reflect how data are distributed along the number line

With the hypothetical data we have been working with (in the top graph), we seem to have picked up a couple of reasonable breaks, but we also 

seem to have missed one; this also seems to raise the issue of what an appropriate number of classes would be

For another hypothetical dataset (the bottom graph), our breaks don’t seem to coincide with actual breaks in the data

 
Slides 39-45: Quantiles

In slide 41, we compute that 3 observations should fall in each class, with two left over; if we assume the two left over are placed in the first and second class, 

we end up with the results shown in slide 42

A key point is that again we find that the class limits may not reflect how data are distributed along the number line, as shown in slide 45; this disadvantage 

for both equal interval and quantiles leads us to the maximum breaks method

 



Slides 46-49: Maximum breaks
Note how the maximum breaks method does seem to pay attention to the distribution of the data along the number line

 
Slide 50: Linear simplification
 
Slide 51: Linear simplification

Could use the term “linear generalization”, but it is probably more appropriate to use the term “linear simplification” because there is a host of generalization 

operators.

 
Slide 52: Generalization operators

Go through and touch briefly on a number of the operators

Simplification

Eliminating points to speed processing (we’ll see other reasons in a moment)

Smoothing

Smoothing (or reducing angularity) as in contour mapping

Amalgamation

Grouping points or areas

Why do we do this? Scale change…

Merging

Grouping linear features

Again, why do we do this? Scale change…

Exaggeration

Amplify a specific portion of an object

Maybe for shipping, we need to show that there is an entrance to this bay

We lie for good reason

 
Slide 53: Why simplify?
 
Slide 54: Local vs. Global

To illustrate the difference between the two, draw a simple example on the board and ask students to think about how you would delete points

 
Slide 55: An example of a local method
 

 Slide 56: The classic Douglas-Peucker global algorithm…
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