Lab: Multiprocessing and ArcPy

Lab. Parallel Computation using Multiprocessing and Arcpy

ArcPy is a Python site package for ArcGIS 10+. ArcPy enables the automation of map creation and the conversion
and management of data and provides access to a large number of Geoprocessing tools, functions, classes and
modules which can be incorporated into GIS workflows. Multiprocessing is a site package which allows for the
parallelization of a Python script. It can be used to parallel both locally and remotely. This package functions by
creating sub-processes as opposed to utilizing threads. This lab will outline important parts of implementing the
multiprocessing package to a script, as well as provide several examples of its use.

Installation and Set up

® TouseArcPy, ArcGIS must be installed on computer with avalid license.

® To use multiprocessing, Python language package version 2.6 or newer is needed.

® TheParallel Python module must be downloaded separately to your machine before use.

® Oncetheinstallations are finished, these modules can be imported directly to the Python script.
Multiprocessing Functions
1. Pool (Processes = number)

A process pool object which controls a pool of worker processes to which jobs can be submitted. It supports
asynchronous results with timeouts and callbacks and has a parallel map implementation. (https://docs.python.org/2
[library/multiprocessing.html) Y ou can choose the number of processes to assign using this function.

2. Map(function,iterable],chunksize])

This blocks the function until the result is ready. Function is only executed in one of the workers of the pool and it
supports only one iterable argument. The second argument can be alist; the list represents how you split tasks. Each
element in the list will be passed to the function and run parallel.

3. Close

Prevents any more tasks from being submitted to the pool. Once al the tasks have been completed the worker
processes will exit. (https://docs.python.org/2/library/multiprocessing.html)

4. Join

Wait for the worker processes to exit. One must call close() or terminate() beforeusing join() .(https.//docs.
python.org/2/library/multiprocessing.html)

Examples of Multiprocessing

Prime number sum

This first example illustrates how the Multiprocessing module works on a simple mathematical operation (not using
Arcpy). The script calculates the sum of prime numbers below a given integer in parallel.

https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html#multiprocessing.pool.multiprocessing.Pool.close
https://docs.python.org/2/library/multiprocessing.html#multiprocessing.pool.multiprocessing.Pool.terminate
https://docs.python.org/2/library/multiprocessing.html#multiprocessing.pool.multiprocessing.Pool.join
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html

import time,math,multiprocessing # Import module

def isprime(n): # Defines”isprime” function: Returns True if n is prime

if not isinstance(n, int):

raise TypeeError("argument passed to is_prime is not of 'int' type")
ifn = 2:

return False
if n = 2:

return True
max¥x = int(math.ceil{math.sqrti(n)))
i=2
while i == max:

if n % 1i==0a:

return False

i+=1

return True

Calculates sum of all primes below given integer n
def sum_primes(n):
return sum([¥ for ¥ in xrange(2,n) if isprime(x)])

def main():
Define chunksize
inputs = [1e0ec@, 100100, 100200, 100300, 100400, 106500, 100608, 100700]
pool = multiprocessing.Pool() # Initialize pool of workers

Use function name and list as arguments and map jobs to different workers,
and get the results object
out = pool.map(sum_primes, inputs)
for i in range(len(out)):
Format print out on screen
print "sum of primes below" , inputs[i] , 'is' , out[i]
pool.close() # Prevent processes to enter the pool
pool.join() # Wait until all the processes are done

== == o

Calls main function: calculates time at process start, time at process end,
calculates elapsed time and prints it

if _name__ == '__main__':
t1 = time.time()
maing)

Add Field and Calculate Field

This second example adds and calculates field contents to all shapefiles located in a specified directory. The
application of Multiprocessing here is designed to speed up a repetitive process applied to a large number of
datasets. This example uses Arcpy Multiprocessing and is an example of how multiprocessing can handle tasks
related to vector GIS data.

import os,arcpy,multiprocessing, time # Import modules

for i in fieldList:
if i == "TYPE" or i == "NAME":

arcpy.DeleteField_management({shapefile, [1])
Add field called “TYPE"™ in “TEXT" format
arcpy.management . AddField(shapefile, 'TYPE', 'TEXT"')
Add field called “NAME™ in “TEXT"™ format
arcpy.management . AddField(shapefile, '"NAME', 'TEXT')

desc = arcpy.Describe(shapefile)

name = shapefile[:-4]

def main():
workspace = r'D:\YOUR _WORKSPACE HERE! '# Define workspace

Create fully pathed workspace locations
fc_list = [os.path.join(workspace, fc) for fc in fcs)

pool = multiprocessing.Pool()
pool.map(update_shapefiles, fc_list)
pool.close()

pool.join()

Calls main function: calculates time at process start,
calculates elapsed time and prints it
if _name__ == '__main__';

t1 = time.time()

maing)

t2 = time.time()

print tz-t1

def update shapefiles(shapefile): # Define function for shapefile updating
fieldList = arcpy.ListFields(shapefile) # Create 1ist of all fields in dataset

Delete “TYPE" or “NAME"” titled fields if they pre-exist

typel = stridesc.shapeType) # Store string of shapefile type
Store portion of shapefile name

arcpy.CalculateField management(shapefile, 'TYPE', '"'+ fypel +'"'})
arcpy.calculateField _management(shapefile, '"NAME', '"'+ name + '"')

arcpy.env.workspace = workspace # Set Arcpy environment workspace
fcs = arcpy.ListFeatureclasses('*') # List all feature classes

Pool processes and multiprocess “update_shapefile” function on “fc_list”

time at process end,

Download Word Document Copy of Lab Assignment

Creator Name Jie Tian

Content Title Multiprocessing and ArcPy

Content Type Lab Assignment

Part Of Module 3: High Performance Geospatial Computing

Learning Objectives
Background Knowledge
Resources Needed
Work Mode

Relation to Project

Feedback Needed

https://wiki.ncsa.illinois.edu/download/attachments/39946190/Module%20III%20Lab.%20Multiprocessing%20and%20ArcPy.docx?version=1&modificationDate=1436902249000&api=v2
https://wiki.ncsa.illinois.edu/display/cybergisp/Module+3

	Lab: Multiprocessing and ArcPy

