
DevOps and Cloud Computing from Velocity Conference
I had the privilege of attending the   at the end of May.  While the theme was "DevOps Web Performance", it Velocity Conference in Santa Clara, CA
focused primarily on DevOps and cloud computing. While neither of these were new to me, I learned a lot about the culture and benefits of both, as well as 
how cloud computing benefits DevOps.

DevOps
DevOps Goals
DevOps Culture
DevOps Tools
DevOps Gets Personal

Cloud Computing
Docker

Other Learnings
Linux Performance Tools
Best Practices for MySQL HA
Scaling Ingest
Vagrant & Virtualbox

Conference Resources

DevOps

So, what is DevOps?  I can't define DevOps any better than the following snippets from  :Wikipedia

DevOps Goals

Understanding the purpose of the DevOps method is more useful to me than rigidly defining it.  The following are key goals that I see with DevOps:

Faster Deployment - Allowing the developers to deploy with less effort can result in faster time to release (market), lower failure rate of releases, 
shortened lead time between fixes, and faster mean time to recovery of code.
Collaboration - This is more than just better communication. Standardizing development environments that are highly collaborative aids in the 
software application release management for an organization. Incidents, documentation, deployments, and other events easily tracked across all 
teams involved. Barriers are removed between developers, QA, operations, and support roles.
Integration - Developers find value in an integrated system for product delivery, quality testing, feature development, and maintenance releases.
Automation - Simplifying processes allows those processes to become increasingly programmable and dynamic. This allows automation which 
can maximize predictability, efficiency, security, and maintainability of operational processes.
Measurement - Without measurement you can't tell if you're actually improving the systems. Simple metrics of key processes allow for quick 
analysis of the process involved. Think of this as applying the scientific method to continuously measure your results.
Empowering & Trusting Developers - Perhaps most important is the idea of granting the developers more control of the environment. The 
infrastructure is in place to support the applications, not the other way around.

DevOps Culture

Every organization needs to leverage it's resources to  , typically related to money. Using a method like DevOps give an organization maximize their goals
tools to better identify their constraints and reduce bottlenecks in processes and procedures. Again, key metrics are critical to identifying issues and 
measuring the improvement, ideally in realtime.

We all know to  . But the key is to have methods in place that provide speed and flexibility, which allow the organization to actually "expect the unexpected"
deal with the unexpected. Metrics allow you to see the unexpected, while easy collaboration and deployment allows you to respond quickly. And when 
things do fail, we want processes to fail gracefully or even partially, then learn from that failure.

Providing good tools within an organization   of the people and teams. Which comes first... the efficient teams, or the helps steers toward good behavior
tools? Obviously it's an evolutionary process of improvement, but once the tools hit critical mass, the whole organization benefits and learns from them.

I notice a lot of DevOps shops make heavy use of   products. It's less of a love of the OpenSource culture, but more of an understanding that it OpenSource
allows for more customization and flexibility of the tools. If something doesn't quite work like needed, a DevOps team can fork or add new features to 
OpenSource tools. Yet at the same time, these teams realize the value in not reinventing every tool. If it works, don't waste time fixing it.

While DevOps focuses a lot on processes and tools, it loses it's value if it doesn't put  . It's more about developing empathy among the human element first
the team. It's not developers vs operations, or management vs engineering. It's about understanding the individuals, the teams, and the organization, then 
working together in trust and with power.

What is DevOps?

DevOps is a software development method that stresses communication, collaboration, integration, automation, and measurement of 
cooperation between software developers and other information-technology (IT) professionals.

The method acknowledges the interdependence of software development, quality assurance, and IT operations, and aims to help an 
organization rapidly produce software products and services and to improve operations performance. In traditional organizations there is rarely 
cross-departmental integration of these functions with IT operations.

DevOps promotes a set of processes and methods for thinking about communication and collaboration between development, QA, and IT 
operations.

http://velocityconf.com/devops-web-performance-2015/
http://en.wikipedia.org/wiki/DevOps


1.  
2.  
3.  

DevOps Tools

Below is a summary of the types of tools typically associated with DevOps, along with some specific examples of each type:

Communication & Collaboration
Realtime communication - chat with integrations for tickets, source control, etc.

HipChat
Slack

Documentation - wiki
Tracking requests - tickets
Source control

Git
GitHub
GitLab

Metrics & monitoring - make easily available to everyone
Jut
Zabbix
Nagios
PagerDuty
Pingdom
New Relic 
OpenTSDB

Metrilyx - dashboard for OpenTSDB
PagerDuty

Deployment
Build & integration

Jenkins
Travis CI

Testing & QA
Gatling
Cucumber

Continuous deployment (or continuous delivery) - gives developers control & ownership
deployinator
Rundeck

Automation
Configuration management

Chef
Puppet
Ansible - more realtime than others, you push configs when you want
zookeeper - HA configuration cluster
Etcd - distributed keystore for shared configuration and service discovery
Consul - shared configuration and service discovery

Cloud & scaling
Let the infrastructure scale and heal dynamically. I discuss this more below.

DevOps Gets Personal

Coming from scientific computing, I was one of the few attendees who wasn't at a technology company already drinking the DevOps "Kool-Aid". Over the 
past few years I've wavered in my desire for making use of DevOps, but this conference helped me better understand why it is much harder to implement 
DevOps, than to simply like it.

While utilizing various components of DevOps has tremendous value (e.g. configuration management, monitoring, source control), picking and choosing 
doesn't make you a DevOps shop. They key ingredient to DevOps is the empowerment and trust of the developers. It revolutionizes the work culture when 
the organization streamlines the process for the developers to be able control this applications.

As a system administrator on the Ops side of things, it's easy for me to (mostly inadvertently) slow down the developers. I'm not trying to make things 
difficult for the developers, but it comes down to three things:

I don't always trust the developers
I haven't prioritized setting up systems to empower the developers
The organization doesn't always value the deployment of key tools and processes

Even if my team or organization doesn't fully endorse DevOps, there are things I can do to build my trust of my developers and to empower them to do 
even better work.

Cloud Computing

Virtualization and cloud computing aren't just the new hip trend. Their real benefit comes from letting the infrastructure dynamically scale and repair itself. 
To maintain efficiency systems should scale based upon actual current requirements (from metrics). And in the event of failures, the infrastructure should 
monitor itself and recover. Cloud computing provides for this dynamic infrastructure.

But, which technologies should we focus on?

Docker

https://www.hipchat.com/
https://slack.com/
https://git-scm.com/
https://github.com/
https://about.gitlab.com/
http://www.jut.io/
http://www.zabbix.com/
http://www.nagios.org/
http://www.pagerduty.com/
http://www.pingdom.com/
http://www.newrelic.com/
http://opentsdb.net/
https://github.com/Ticketmaster/metrilyx-2.0
http://www.pagerduty.com/
https://jenkins-ci.org/
https://travis-ci.org/
http://gatling.io/
https://cucumber.io/
https://github.com/etsy/deployinator
http://rundeck.org/
https://www.chef.io/
https://puppetlabs.com/
http://www.ansible.com/
https://zookeeper.apache.org/
https://github.com/coreos/etcd
https://www.consul.io/


Docker is very attractive for developers of multi-tiered architecture systems. Each individual application service (e.g. presentation, processing, data, etc.) 
are setup in individual containers. These are resources that are isolated to allow multiple independent containers to run on a single kernel instance.

Docker containers make it convenient for the developer to develop each service independently without having to spend a lot of effort focusing on the 
overall system. But, they also simplify the deployment process as well, because the packaged container can be copied over to other environments and 
easily started up there as well.

The real cloud power of Docker containers is achieved through one of the "container management" tools or frameworks. Container management tools 
provide functionality for bootstrapping, scheduling, discovery, configuration, proxies, application monitoring, replication, and software defined network 
fabrics. You can sort of think of these tools as vCenter for your containers and applications. There are currently three major frameworks for container 
management:

CoreOS -   uses Linux containers to manage your services at a higher level of abstraction
systemd - container bootstrapping
fleet - container scheduling
etcd - service discover & shared configuration values
flannel - overlay of software defined network fabric to communicate between containers on separate hosts

Kubernetes - orchestration system for Docker containers
node - runs containers and proxies service requests
pod - represents a logical application
scheduler - schedules pods to run on nodes
replication controller - manages a replicated set of pods
service - service discovery for pods

Mesos Data Center Operating System (DCOS)

These container management tools can be used independently, or as combinations of various components of each (since they are each OpenSource 
projects). The   is an example of a commercial product that includes the best of CoreOS Stack and Kubernetes.Tectonic Platform

These are generally implemented on top of public clouds (e.g. AWS), bare metal servers, or private clouds (e.g. OpenStack or even VMware).

Other Learnings

In addition to the core focus of the conference, I picked up some other useful stuff that is less on topic.

Linux Performance Tools

Brendan Gregg from NetFlix presented an amazing  . He first did a run down of how important it is to have a tutorial on linux performance tools standard 
 for diagnosing performance issues. A standard methodology gives you a checklist of where to start and stop. Most of us tend to use anti-methodology

methods that are not methodical at all. We tend to use popular tools at random, try random stuff till the problem goes away, or blame someone else. His 
website details   that are useful. He then walked us through lots of actual tools that can be used for  , actual, useful, standardized methods observability bench

,  , states, and tracing. One useful tool he had created were block diagrams of the entire system that he then overlayed tools for various types marking tuning
of performance analysis (e.g.  ). He has lots of this content on his   and several   online.observability with sar website video presentations

Best Practices for MySQL HA

Colin Charles from   presented a tutorial that basically outlined the current state of options for high availability MySQL and his recommendations. MariaDB
His review of various options was very extensive. Here are a few of my snippets of takeaways:

The larger your innodb_log_file_size, the longer your recovery times will be. Keep them as relatively small as possible.
MySQL sandbox gives you easy way of installing a various MySQL server configurations via perl module.
Generally the best redundancy is with MySQL replication with essentially no performance penalty

The 2nd iteration of semi-synchronous replication in 5.6 - waits for 1 slave to acknowledge.
Replication is greatly improved in 5.6 with global transaction IDs, group commits, binlog checksums, crash safe binlogs & relay logs, 
parallel replication, etc.
Can create new slaves without locking tables and flushing master database.
There are several replication monitoring tools available, e.g. Percona toolkit.
Multithreaded slave replication is now possible.

Tungsten replicator (open source) provides hererogenious, multi-master, and Oracle replication.
Galera and NBD are high performance cluster solutions.
Current frameworks for MySQL failure and load balancing:

severalnines clusterControl provides hot backups and rolling updates.
mysql MHA handles automated and manual failovers (replaces mysql-mmm).
MySQL Fabric provides high availability and scaling via sharding.
MariaDB MaxScale is a relatively new pluggable architecture for scalability, high availability, and security.

Colin's recommendations:
Keep with innoDB. It has lots of support and users.
Use row based replication.
gtid and semisync help with replication failover.
Use multi-threaded slaves for faster performance.

Scaling Ingest

Rajiv Kurian from SignalFx gave an   they were having with metrics ingest. A lot of this was very technical, but here are a overview of some scaling issues
few takeaways I did have:

https://coreos.com/using-coreos/
https://github.com/coreos/systemd
https://coreos.com/using-coreos/clustering/
https://coreos.com/etcd/
https://github.com/coreos/etcd
https://github.com/coreos/flannel
http://kubernetes.io/
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/node.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/pods.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/replication-controller.md
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/services.md
https://mesosphere.com/
https://tectonic.com/
http://www.brendangregg.com/
http://www.slideshare.net/brendangregg/velocity-2015-linux-perf-tools
http://www.brendangregg.com/methodology.html
http://www.brendangregg.com/methodology.html
http://www.brendangregg.com/methodology.html
http://www.brendangregg.com/Perf/linux_observability_tools.png
http://www.brendangregg.com/Perf/linux_benchmarking_tools.png
http://www.brendangregg.com/Perf/linux_benchmarking_tools.png
http://www.brendangregg.com/Perf/linux_tuning_tools.png
http://www.brendangregg.com/Perf/linux_observability_sar.png
http://www.brendangregg.com/
https://www.youtube.com/results?q=brendan+gregg
http://www.bytebot.net/
https://mariadb.org/
http://easy%20way%20of%20installing%20a%20mysql%20server/
http://severalnines.com/
https://code.google.com/p/mysql-master-ha/
https://www.mysql.com/products/enterprise/fabric.html
https://mariadb.com/products/mariadb-maxscale
https://twitter.com/rzidane360
http://www.slideshare.net/SignalFx/velocity15-rajivs-fxscalingingestpipeline


L1 cache on the processor is generally 200 times faster than main memory. They optimized data structures to keep data in L1 cache.
Measure your real application in preference over just using micro benchmarks of your system.

Off topic thought, triggered by the word "ingest"... we should consider doing workflow and data ingests via containers in a container management 
framework. It could be a much more resilient and dynamic infrastructure.

Vagrant & Virtualbox

Several presenters made use of   and  . While I'd heard of this before, it was the first time I'd played with it. Vagrant provides an almost Vagrant VirtualBox
cloud-like   to spin up and use VMs on your local system. It's very slick for prototyping stuff on your laptop or desktop.command line interface

 

Conference Resources

Conference: http://velocityconf.com/devops-web-performance-2015/
Videos: http://velocityconf.com/devops-web-performance-2015/public/content/video
Slides: http://velocityconf.com/devops-web-performance-2015/public/schedule/proceedings

https://www.vagrantup.com/
https://www.virtualbox.org/wiki/VirtualBox
http://docs.vagrantup.com/v2/getting-started/index.html
http://velocityconf.com/devops-web-performance-2015/
http://velocityconf.com/devops-web-performance-2015/public/content/video
http://velocityconf.com/devops-web-performance-2015/public/schedule/proceedings

	DevOps and Cloud Computing from Velocity Conference
	DevOps
	DevOps Goals
	DevOps Culture
	DevOps Tools
	DevOps Gets Personal

	Cloud Computing
	Docker

	Other Learnings
	Linux Performance Tools
	Best Practices for MySQL HA
	Scaling Ingest
	Vagrant & Virtualbox

	Conference Resources


