
1.
2.
3.
4.
5.

6.
7.
8.

9.
10.
11.
12.
13.
14.
15.

Trebuchet
A multi-scheme file-transfer API and client library

Downloads/Documentation.

There is full support for Trebuchet in . One can run Trebuchet in Ogrescript by downloading and using the most recent version of .Ogrescript ELF
The Trebuchet libraries can also be retrieved in a stand-alone distribution from . Included in the latter is also a Trebuchet Stand-alone Libraries
small shell script (UNIX systems) for restarting interrupted or failed operations (see below).
Trebuchet Javadocs can also be accessed at: .API
For configuration options, see .Configuration Options

Purpose

The principal aim of this library is to provide an abstraction layer over the standard file-related operations (such as directory listing, directory creation, file
transfer and file deletion) which allows switching between protocols without alteration of either source code or scripting. The library is also designed to be
extensible so that new protocol support can be added in a reasonably clean manner.

Currently, there are two ways in which Trebuchet can be utilized:

As a normal Java package import (i.e., programmatic calls to the library by other Java code);
Through the available tasks: see the .Ogrescript Ogrescript Trebuchet plug-in

Certain capabilities, such as restarting operations and inspecting the binary "cache" files, are also available from the command-line. There are plans to
provide sometime in the near future an Eclipse-based RCP Trebuchet client for easy management of file transfers across multiple hosts.

Features

The following are some of the more salient features offered by the Trebuchet library/tasks:

Full support for UNIX-style operations (, , , , ,) locally and via the SSH/SCP protocols.ls touch mkdir cp mv rm
Support for all of these operations except via GRIDFTP and WEBDAV.touch
GSI/certificate-based authentication/authorization (SSH and GRIDFTP).
Automatic one-hop handling of third-party transfers over mixed protocols (e.g., SCP on host A to GRIDFTP on host B).
Two ways of achieving file transfer or deletion:

By specifying exact locations/paths;
By scanning or listing.

Fully recursive pattern-based scanning (using the '*' and '**' wildcard characters; see).UriPattern
All operations configured (using the available settings appropriate to the given protocol) via a general-purpose .configuration object
All GRIDFTP options available in the library exposed for configurability; in particular, optimization settings such as:jglobus

TCP buffer size;
setting active mode on the target.

Automated support for both LIST and MLST/MLSD (GRIDFTP); options for forcing existence checking through the LIST command.
Automated staging of files from UNITREE tape archive using GRIDFTP (= MSSFTP).
Full access (i.e., by non-Trebuchet-related code), if so desired, to source and target paths during and after operations.
Thread-pooled parallel copy operations.
Automated use of multiple GRIDFTP connections for a given endpoint, when available, for non-striped operations.
Fail-over and retry capabilities on a file-by-file basis.
Flexibility in the kind and number of events the user can choose to receive.

Design overview

The following is a high-level simplification of the layers constituting the Trebuchet core library:

https://wiki.ncsa.illinois.edu/display/MRDPUB/Ogrescript
https://wiki.ncsa.illinois.edu/display/MRDPUB/Elf
http://rcp.ncsa.uiuc.edu:8080/hudson/job/Trebuchet
http://otfrid.ncsa.uiuc.edu/elf/api
https://wiki.ncsa.illinois.edu/display/MRDPUB/TrebuchetConfiguration
https://wiki.ncsa.illinois.edu/display/MRDPUB/Ogrescript
https://wiki.ncsa.illinois.edu/display/MRDPUB/ncsa.tools.ogrescript.trebuchet
https://wiki.ncsa.illinois.edu/display/MRDPUB/UriPattern
https://wiki.ncsa.illinois.edu/display/MRDPUB/TrebuchetConfiguration

The main component is the operation, which must be configured and run. An operation has in turn a monitor, which mediates between the two agents
involved in managing the execution: on the one hand, there is an agent responsible for interacting with the cache (see further below); on the other, an
agent which controls the submission of any given piece of work to a client. In the layer just below the agents are found specialized pieces necessary for
scanning or for a copy operation. Every operation requires a particular client type capable of handling it. Finally, at the bottom-most layer lies the data
abstraction through which all interactions during the operation flow: the "cache". In certain optimized cases, it is possible to avoid creating a cache for the
operation, but in most instances a cache or pair of caches will serve as the data source and implicit log.

Scheme-to-protocol mapping

The basis for Trebuchet's multi-protocol functionality lies in mapping (via the Eclipse-RCP extension-point mechanism) URI schemes to a set of
implementations.

As an example, let us consider the protocol; in order to support the available operations (in this case, all of them), the following classes needed to be ssh
implemented:

Function Abstract Class Concrete Class

exists, , is file is dir ncsa.tools.trebuchet.core.clients.VerifyClient ncsa.tools.trebuchet.ssh.clients.SSHVerifyClient

ls ncsa.tools.trebuchet.core.clients.ListClient ncsa.tools.trebuchet.ssh.clients.SSHListClient

touch ncsa.tools.trebuchet.core.clients.TouchClient ncsa.tools.trebuchet.ssh.clients.SSHTouchClient

mkdir ncsa.tools.trebuchet.core.clients.MkdirClient ncsa.tools.trebuchet.ssh.clients.SSHMkDirClient

rm ncsa.tools.trebuchet.core.clients.DeleteClient ncsa.tools.trebuchet.ssh.clients.SSHDeleteClient

cp, mv ncsa.tools.trebuchet.core.clients.CopyClient ncsa.tools.trebuchet.ssh.clients.SSHCopyClient

Then a scheme-to-client mapping needed to be provided via extensions to the extension point:ncsa.tools.trebuchet.core.clientTypes

Operation Source Scheme Target Scheme Client

verify ssh, , , scp gsissh gsiscp ncsa.tools.trebuchet.ssh.clients.SSHVerifyClient

list ssh, , , scp gsissh gsiscp ncsa.tools.trebuchet.ssh.clients.SSHListClient

touch ssh, , , scp gsissh gsiscp ncsa.tools.trebuchet.ssh.clients.SSHTouchClient

mkdir ssh, , , scp gsissh gsiscp ncsa.tools.trebuchet.ssh.clients.SSHMkDirClient

delete ssh, , , scp gsissh gsiscp ncsa.tools.trebuchet.ssh.clients.SSHDeleteClient

copy file ssh, , , scp gsissh gsiscp ncsa.tools.trebuchet.ssh.clients.SSHCopyClient

copy ssh, , , scp gsissh gsiscp file ncsa.tools.trebuchet.ssh.clients.SSHCopyClient

copy ssh, , , scp gsissh gsiscp ssh, , , scp gsissh gsiscp ncsa.tools.trebuchet.ssh.clients.SSHCopyClient

This mapping is referred to when Trebuchet processes a URI or URIs for a given operation, so that the URI schemes indicate which client to use for the
operation.

There are two other classes, the and which also need to be mapped for each protocol, but usually PooledClientGenerator ListToCopyConverter
the default implementations for these classes will be sufficient; also, depending on the file system, a special parser may be necessary for interpreting
directory-listing lines, but in most cases the core parsers will work. Finally, for each scheme associated with the protocol, a small definition class
implementing needs to be created; this class defines the underlying protocol used for the operation for ncsa.tools.trebuchet.schemes.IScheme
Trebuchet's internal use, representing the operations which the protocol can support.

The schemes which have been implemented in the current version of Trebuchet are listed .here

Operation Caches

The bottom-most layer of the Trebuchet architecture consists of a binary file for the operation, accessed using Java's library, and abstracted out as a NIO
Trebuchet object. This is admittedly something of a misnomer, since no entries are actually being cached in memory, and therefore no fixed size is Cache
maintained by booting entries from it; but it is cache-like in that it provides an access-point through which all aspects of an operation pass and, under
normal conditions (successful termination of the entire operation), is transient, i.e., deleted (the cache can optionally be held on to after the operation; if the
operation is incomplete or failed it can be restarted from its cache(s) without having to generate the listings from scratch or redo the successful transfers).

There are two standard caches, one for listing or scanning operations, and one for copy or transfer operations. When a copy operation relies on scanning
or listing to provide it with the source locations, there is a conversion procedure (supplied by the mentioned above) for creating ListToCopyConverter
the copy cache entries from the associated list cache entries. Scanned operations for , and by default do the conversion touch delete copy
asynchronously using a listener API: as a list entry is added to the list cache, one listener passes it to the converter to be added to the copy cache, while
another listener is responsible for passing off the copy entries to the appropriate client as they become available (multiple clients are pooled and this single
listener agent designates work for them as they become free). There is an option to override this behavior such that the entire listing or scanning be done
first, but in most cases the parallelized list-convert-copy is to be preferred.

The reasons for making all operations rest on a disk-I/O layer are primarily:

Greater scalability: large or deeply recursive directory copies, for instance, can be handled without risk of running out of memory;
Greater reliability: because the cache serves as a full operation log, the failed parts of the operation can be retried simply by pointing to the
original cache; moreover, the cache will be there should the JVM in which the operation was running crash.

As stated above, the underlying cache file is written in binary. The following tables describe the byte-structure of its respective entry. As can be seen,
these are organized similarly to network packets.

LIST CACHE ENTRY

Fixed length entry "header" = 65 bytes. The subscripted properties are specific to the metadata returned by a given file system. "Length" refers to the
number of bytes in a variable-length segment of the entry itself; size refers to file size in bytes.

CONTENTS TYPE BYTE POSITION

status byte 0

entry id long 1

previous id long 9

type byte 17

symlinked parent byte 18

mode char 19

links int 21

size long 25

modified long 33

user length int 41

group length int 45

relative dir length int 49

name length int 53

symlink length int 57

n = num properties int 61

property name i
length

int 65 + 8i

property value i
length

int 69 + 8i

user bytes 65 + 8n

https://wiki.ncsa.illinois.edu/display/MRDPUB/Schemes

group bytes 65 + 8n + user length

relative dir bytes 65 + 8n + user length + group length

name bytes 65 + 8n + user length + group length + relative dir length

symlink bytes 65 + 8n + user length + group length + relative dir length + name length

property name i bytes 65 + 8n + user length + group length + relative dir length + name length + symlink length + Sum[0 <= j < i] property name j length

property value i bytes 65 + 8n + user length + group length + relative dir length + name length + Sum[0 <= j < n] property name j length + Sum[0 <= j < i]
property value j length

(end) 65 + 8n + user length + group length + relative dir length + name length + Sum[0 <= j < n] property name j length + Sum[0 <= j < n]
property value j length

COPY CACHE ENTRY

Fixed length entry "header" = 90 bytes. As before, "length" refers to the number of bytes in a variable-length segment of the entry itself; size refers to file
size in bytes.

CONTENTS TYPE BYTE POSITION

entry id long 0

previous id long 8

status byte 16

type byte 17

first update long 18

last update long 26

retry count int 34

duplicate target tag int 38

source size long 42

tmp size long 50

target size long 58

source modified long 66

source length int 74

symlink length int 78

tmp length int 82

target length int 86

source bytes 90

symlink bytes 90 + source length

tmp target bytes 90 + source length + symlink length

target bytes 90 + source length + symlink length + tmp length

(end) 90 + source length + symlink length + tmp length + target length

The contents of a cache can be printed in human-readable form either by calling the method on the cache object (programmatically), or by using print
the from the command-line and pointing it at the cache file. Use this tool to dump the cache either to stdout or to a text file. The TrebuchetCacheReader
commandline options are:

-l <list-cache path>
-c <copy-cache path>
-v (verbose, i.e, display full cache-line string rather than the abbreviated one)
-f write the output to this file

There is also an Ogrescript task .<print-cache>

Operation and Cache Listeners

The following APIs are defined in Trebuchet core for listeners to add to an operation in order to receive monitoring events:

https://wiki.ncsa.illinois.edu/display/MRDPUB/PrintCache

/**
 * Used by both the operation and its cache to notify changes in status.
 * A "cache update" means an entry has been added to the cache.
 */
public interface IOperationListener
{
 void operationStarted(String operationId);
 void operationFinished(String operationId);
 void cacheUpdated(String operationId, long lastEntryId);
 void scanningDirectory(String operationId, long id);
}

/**
 * Cache entry updates are called whenever a fixed-length field on a given
 * entry line is altered (variable-length fields are write-once).
 */
public interface IUpdateOperationListener extends IOperationListener
{
 void cacheEntryUpdated(String operationId, long entryId);
}

Custom listeners of course can be built and added, but there are a number of types already available in the and ncsa.tools.trebuchet.core ncsa.
 plug-ins. Further details on these listeners appear in the Ogrescript user's guide: see .tools.trebuchet.listeners IOperationListener

Here are some sample outputs from two of the more common listeners:

1) The tracks the progress of the entire copy operation over time:CopyProgressListener

OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target, TO /Users/arossi/elf-archive/elf-test/run/report, STATUS COPY_STARTED, TOTAL
FILES 10, FILES COMPLETED 1, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:14, ELAPSED TIME 0.609, BYTES COPIED 30.0,
THROUGHPUT 4.69790303648399E-5
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target, TO /Users/arossi/elf-archive/elf-test/run/report, STATUS COPY_STARTED, TOTAL
FILES 10, FILES COMPLETED 2, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:14, ELAPSED TIME 0.686, BYTES COPIED 60.0,
THROUGHPUT 8.341174779063411E-5
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target, TO /Users/arossi/elf-archive/elf-test/run/report, STATUS COPY_STARTED, TOTAL
FILES 10, FILES COMPLETED 3, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 0.901, BYTES COPIED 90.0,
THROUGHPUT 9.526158543458657E-5
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target, TO /Users/arossi/elf-archive/elf-test/run/report, STATUS COPY_STARTED, TOTAL
FILES 10, FILES COMPLETED 4, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 1.155, BYTES COPIED 120.0,
THROUGHPUT 9.908304586038961E-5
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target, TO /Users/arossi/elf-archive/elf-test/run/report, STATUS COPY_STARTED, TOTAL
FILES 10, FILES COMPLETED 5, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 1.302, BYTES COPIED 150.0,
THROUGHPUT 1.098703129500288E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target, TO /Users/arossi/elf-archive/elf-test/run/report, STATUS COPY_STARTED, TOTAL
FILES 10, FILES COMPLETED 6, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 1.466, BYTES COPIED 180.0,
THROUGHPUT 1.1709507295574693E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target, TO /Users/arossi/elf-archive/elf-test/run/report, STATUS COPY_STARTED, TOTAL
FILES 10, FILES COMPLETED 7, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:16, ELAPSED TIME 1.848, BYTES COPIED 210.0,
THROUGHPUT 1.0837208140980113E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target, TO /Users/arossi/elf-archive/elf-test/run/report, STATUS COPY_STARTED, TOTAL
FILES 10, FILES COMPLETED 8, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:16, ELAPSED TIME 1.971, BYTES COPIED 240.0,
THROUGHPUT 1.1612472650304414E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target, TO /Users/arossi/elf-archive/elf-test/run/report, STATUS COPY_STARTED, TOTAL
FILES 10, FILES COMPLETED 9, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:16, ELAPSED TIME 2.135, BYTES COPIED 270.0,
THROUGHPUT 1.2060518287104802E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target, TO /Users/arossi/elf-archive/elf-test/run/report, STATUS COPY_STARTED, TOTAL
FILES 10, FILES COMPLETED 10, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:16, ELAPSED TIME 2.26, BYTES COPIED 300.0,
THROUGHPUT 1.2659393580613938E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target, TO /Users/arossi/elf-archive/elf-test/run/report, STATUS DONE, TOTAL FILES 10, FILES
COMPLETED 10, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:16, ELAPSED TIME 2.401, BYTES COPIED 300.0, THROUGHPUT
1.1915963970090588E-4

2) The tracks the progress of individual files:FileProgressListener

OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_0.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_0.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:14, ELAPSED TIME 0.0, BYTES COPIED 0.0,
THROUGHPUT ?
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_0.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_0.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:14, ELAPSED TIME 0.056, BYTES COPIED 30.0,
THROUGHPUT 5.108969552176339E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_1.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_1.txt,

https://wiki.ncsa.illinois.edu/display/MRDPUB/IOperationListener

STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:14, ELAPSED TIME 0.0, BYTES COPIED 0.0,
THROUGHPUT ?
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_0.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_0.txt,
STATUS COPY_COMPLETED, SIZE 30, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:14, ELAPSED TIME 0.172, BYTES COPIED
30.0, THROUGHPUT 1.6633854355922967E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_1.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_1.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:14, ELAPSED TIME 0.141, BYTES COPIED 30.0,
THROUGHPUT 2.029094290226064E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_1.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_1.txt,
STATUS COPY_COMPLETED, SIZE 30, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:14, ELAPSED TIME 0.205, BYTES COPIED
30.0, THROUGHPUT 1.3956209508384147E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_2.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_2.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:14, ELAPSED TIME 0.0, BYTES COPIED 0.0,
THROUGHPUT ?
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_2.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_2.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:14, ELAPSED TIME 0.052, BYTES COPIED 30.0,
THROUGHPUT 5.501967210036058E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_2.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_2.txt,
STATUS COPY_COMPLETED, SIZE 30, START 2006/11/20 13:18:14, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 0.156, BYTES COPIED
30.0, THROUGHPUT 1.8339890700120194E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_3.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_3.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:15, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 0.0, BYTES COPIED 0.0,
THROUGHPUT ?
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_3.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_3.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:15, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 0.058, BYTES COPIED 30.0,
THROUGHPUT 4.932798188308189E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_4.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_4.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:15, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 0.0, BYTES COPIED 0.0,
THROUGHPUT ?
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_3.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_3.txt,
STATUS COPY_COMPLETED, SIZE 30, START 2006/11/20 13:18:15, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 0.132, BYTES COPIED
30.0, THROUGHPUT 2.1674416281960225E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_4.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_4.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:15, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 0.105, BYTES COPIED 30.0,
THROUGHPUT 2.7247837611607144E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_4.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_4.txt,
STATUS COPY_COMPLETED, SIZE 30, START 2006/11/20 13:18:15, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 0.211, BYTES COPIED
30.0, THROUGHPUT 1.3559350470231042E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_5.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_5.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:15, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 0.0, BYTES COPIED 0.0,
THROUGHPUT ?
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_5.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_5.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:15, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 0.076, BYTES COPIED 30.0,
THROUGHPUT 3.764503880550987E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_6.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_6.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:15, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 0.0, BYTES COPIED 0.0,
THROUGHPUT ?
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_5.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_5.txt,
STATUS COPY_COMPLETED, SIZE 30, START 2006/11/20 13:18:15, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 0.151, BYTES COPIED
30.0, THROUGHPUT 1.8947171849130796E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_6.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_6.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:15, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 0.055, BYTES COPIED 30.0,
THROUGHPUT 5.201859907670455E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_7.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_7.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:15, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 0.0, BYTES COPIED 0.0,
THROUGHPUT ?
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_6.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_6.txt,
STATUS COPY_COMPLETED, SIZE 30, START 2006/11/20 13:18:15, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 0.147, BYTES COPIED
30.0, THROUGHPUT 1.946274115114796E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_7.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_7.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:15, UPDATED 2006/11/20 13:18:15, ELAPSED TIME 0.091, BYTES COPIED 30.0,
THROUGHPUT 3.1439812628777475E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_7.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_7.txt,
STATUS COPY_COMPLETED, SIZE 30, START 2006/11/20 13:18:15, UPDATED 2006/11/20 13:18:16, ELAPSED TIME 0.364, BYTES COPIED
30.0, THROUGHPUT 7.859953157194369E-5
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_8.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_8.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:16, UPDATED 2006/11/20 13:18:16, ELAPSED TIME 0.0, BYTES COPIED 0.0,
THROUGHPUT ?
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_8.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_8.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:16, UPDATED 2006/11/20 13:18:16, ELAPSED TIME 0.12, BYTES COPIED 30.0,
THROUGHPUT 2.384185791015625E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_8.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_8.txt,
STATUS COPY_COMPLETED, SIZE 30, START 2006/11/20 13:18:16, UPDATED 2006/11/20 13:18:16, ELAPSED TIME 0.158, BYTES COPIED
30.0, THROUGHPUT 1.8107740184928798E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_9.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_9.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:16, UPDATED 2006/11/20 13:18:16, ELAPSED TIME 0.0, BYTES COPIED 0.0,
THROUGHPUT ?
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_9.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_9.txt,
STATUS COPY_STARTED, SIZE 30, START 2006/11/20 13:18:16, UPDATED 2006/11/20 13:18:16, ELAPSED TIME 0.069, BYTES COPIED 30.0,

THROUGHPUT 4.1464100713315213E-4
OP ID null, FROM /Users/arossi/elf-archive/elf-test/run/target/copies/test_file_9.txt, TO /Users/arossi/elf-archive/elf-test/run/report/copies/test_file_9.txt,
STATUS COPY_COMPLETED, SIZE 30, START 2006/11/20 13:18:16, UPDATED 2006/11/20 13:18:16, ELAPSED TIME 0.111, BYTES COPIED
30.0, THROUGHPUT 2.577498152449324E-4

Utility Classes

The following sections are primarily of interest to those wishing to develop code using the Trebuchet library.

ncsa.tools.trebuchet.core.Trebuchet

Provides convenience wrappers around the standard operations. All methods block and do not allow for monitoring or post-processing.

More fine-grained control over the operations can be obtained by using the methods in the ; see below.OperationFactory

static ListCache listRecursive(UriPattern);
static ListCache listRecursive(URI);
static ListCache list(UriPattern, TrebuchetConfiguration, boolean);
static ListCache list(UriPattern);
static ListCache list(URI, TrebuchetConfiguration, boolean);
static ListCache list(URI);

static void touch(UriPattern, TrebuchetConfiguration, boolean);
static void touch(UriPattern);
static void touch(URI[], TrebuchetConfiguration, boolean);
static void touch(URI[]);
static void touch(URI, TrebuchetConfiguration, boolean);
static void touch(URI);

static void mkdir(URI[], TrebuchetConfiguration, boolean);
static void mkdir(URI[]);
static void mkdir(URI, TrebuchetConfiguration, boolean);
static void mkdir(URI);

static void deleteDir(URI, TrebuchetConfiguration, boolean);
static void deleteDir(URI);
static void delete(UriPattern, TrebuchetConfiguration, boolean);
static void delete(UriPattern);
static void delete(URI[], TrebuchetConfiguration, boolean);
static void delete(URI[]);
static void delete(URI, TrebuchetConfiguration, boolean);
static void delete(URI);

static void copyDir(URI, URI, TrebuchetConfiguration, boolean);
static void copyDir(URI, URI);
static void copy(UriPattern, URI, TrebuchetConfiguration, boolean);
static void copy(UriPattern, URI);
static void copy(URI[], URI[], TrebuchetConfiguration, boolean);
static void copy(URI[], URI[]);
static void copy(URI[], URI, TrebuchetConfiguration, boolean);
static void copy(URI[], URI);
static void copy(URI, URI, TrebuchetConfiguration, boolean);
static void copy(URI, URI);

static void moveDir(URI, URI, TrebuchetConfiguration, boolean);
static void moveDir(URI, URI);
static void move(UriPattern, URI, TrebuchetConfiguration, boolean);
static void move(UriPattern, URI);
static void move(URI[], URI[], TrebuchetConfiguration, boolean);
static void move(URI[], URI[]);
static void move(URI[], URI, TrebuchetConfiguration, boolean);
static void move(URI[], URI);
static void move(URI, URI, TrebuchetConfiguration, boolean);
static void move(URI, URI);

static void maybeTransfer(String, File, boolean, TrebuchetConfiguration);
static void maybeTransfer(String, File, boolean);

static boolean supports(URI, String); // tells whether the scheme of the URI supports the
operation
static boolean supportsExecutedOverride(URI, String); // tells whether the scheme of the URI supports an
optimized procedure for the single-target operation
 // (touch, mkdir, delete) that bypasses the cache-
mechanism (i.e., a lightweight operation)

ncsa.tools.trebuchet.core.util.OperationFactory

The factory returns an object which encapsulates the actual Trebuchet operation, allowing for the programmatic control over how and when this may run (n
 implements and). An operation csa.tools.trebuchet.core.operations.Operation java.lang.Runnable ncsa.tools.common.Stoppable

can take various listeners and also return an instance of its underlying caches.

The methods in this class do a minimal setup on the operation. Typically, the steps subsequent to invoking them will be:

1.

2.

3.

4.
5.
6.
7.
8.

Create a object with the appropriate settings (each operation provides a TrebuchetConfiguration getDefaultConfiguration()
method). If a is required and is held in memory, it can be set directly on the configuration object (otherwise, the usual procedure GSSCredential
for locating the on-disk home will be followed).GSSCredential
Initialize the operation using the configuration. If the operation is scanned (), the configuration will be automatically persisted. Otherwise, if Ls...
you wish to store the configuration, call . (If you try to store the config after the operation.storeConfiguration(configuration)
operation has begun – i.e., after the cache has been written to --, you will get an exception.)
Add listeners to the operation. If these listeners themselves require a reference to the cache, they should implement ncsa.tools.trebuchet.

 (the cache will automatically set a reference to itself on them in this case).core.ICacheAccessor
Either call or .run() new Thread(operation).start()
A reference to the underlying cache can be obtained by calling .operation.getReadOnlyCacheInstance()
Operations can be interrupted by calling .halt()
All operations except allow one to check for fatal exceptions thrown during runtime by calling .Ls getOperationError()
Calling will delete the underlying cache(s).cleanup()

NOTES

Operations have not been defined as extension points (only clients, entry converters and client generators are). Given the specificity of an
operation, generic code support beyond simple initialization methods is unfeasible. As mentioned above, adding a new scheme will involve
implementing the relevant clients for the supported operations, and may (but usually will not) require custom converters and generators for the
pool; the client may also require a custom parser, but this is also an implementation issue which has not been exposed as an extension point.Ls
When unprocessed (unscanned) URIs are used to construct the operation, the , and creation methods check to see if the Touch Mkdir Delete
client for the given scheme supports executed overrides.
An instance of the factory must be constructed first; this can be done with or without a object.TrebuchetConfiguration

The following object methods are available:

Ls createUninitializedListOperation(UriPattern);
Ls createUninitializedListOperation(URI);

Touch createUninitializedTouchOperation(URI[], String); // operation id
Touch createUninitializedTouchOperation(URI[], boolean, String); // include ancestors, operation id
Touch createUninitializedTouchOperation(OperationCache);
Touch createUninitializedTouchOperationFromListCache(String);
Touch createUninitializedTouchOperationFromCopyCache(String);

LsTouch createUninitializedTouchOperation(UriPattern);
LsTouch createUninitializedTouchOperationFromPartial(String);

Mkdir createUninitializedMkdirOperation(URI[], boolean, String); // include ancestors, operation id
Mkdir createUninitializedMkdirOperation(OperationCache);
Mkdir createUninitializedMkdirOperationFromListCache(String);
Mkdir createUninitializedMkdirOperationFromCopyCache(String);

Delete createUninitializedDeleteOperation(URI[], String); // operation id
Delete createUninitializedDeleteOperation(URI[], boolean, String); // include ancestors, operation id
Delete createUninitializedDeleteOperation(OperationCache);
Delete createUninitializedDeleteOperationFromListCache(String);
Delete createUninitializedDeleteOperationFromCopyCache(String);

LsDelete createUninitializedDeleteDirOperation(URI);
LsDelete createUninitializedDeleteOperation(UriPattern);
LsDelete createUninitializedDeleteOperationFromPartial(String);

Copy createUninitializedCopyOperations(URI[], URI);
Copy createUninitializedCopyOperation(URI[], URI, String); // operation id
Copy createUninitializedCopyOperations(URI[], URI[]);
Copy createUninitializedCopyOperation(URI[], URI[], String); // operation id
Copy createUninitializedCopyOperation(URI[], URI[], boolean, String); // include ancestors, operation id
Copy createUninitializedCopyOperation(String);
Copy createUninitializedCopyOperation(CopyCache);

LsCopy createUninitializedCopyOperation(UriPattern, URI);
LsCopy createUninitializedCopyDirOperation(URI, URI);
LsCopy createUninitializedCopyOperation(ListCache, URI);
LsCopy createUninitializedCopyOperationFromListCache(String, URI);
LsCopy createUninitializedCopyOperation(String, String); // list cache path, copy cache path

ncsa.tools.trebuchet.core.TrebuchetRestart

https://wiki.ncsa.illinois.edu/display/MRDPUB/TrebuchetConfiguration
https://wiki.ncsa.illinois.edu/display/MRDPUB/TrebuchetConfiguration

Provides both a programmatic and command-line way for restarting an operation which has been interrupted or which has not entirely completed
successfully.

The command-line options are:

-l <list-cache path>
-c <copy-cache path>
-o <operation (touch, mkdir, delete, scanned-touch, scanned-delete, copy, scanned-copy)>
-v (verbose)
-r <number of retries>

Point the operation at the cache or cache-pair with which the original operation was associated.

	Trebuchet

