
Software engineering and integration issues
Discussion Lead: Richard Brower

Scribe:

Participants:

Babak Behzad
George Biros
Anshu Dubey
Cynthia Gibas
Eric Heien
David Hudak
Kevin Jorrisen
George Karypis
Yan Liu
Frank Loffler
David McQueen
Marlon Pierce
Ivan Rodero
Jay Roloff
Todd Tannenbaum
Eric Van Wyk
Julie Wernert 

Questions:

Software Engineering

How many projects benefit from engineering requirements flowing down from a larger organization (such as eclipse.org, apache.org)?
What are some best practices in build, test, verification, validation of our software?
What tooling is effective in promoting good software engineering practices?

Integration

What are the integration models used in our SI2 projects? What are their pros and cons?
What are attractive/effective integration/docking/affiliation points amongst the SI2 projects?
How do we foster integration and affiliation with other software efforts
What are good mechanisms to provide integration points for proprietary software?’
What can we learn on how to push our integration to better levels? Are there high-level interfaces we should be considering? Service interfaces?

Notes:

Benefits from engineering requirements of larger organizations:
Established large open source foundations provide key benefits:

Provide tools for aiding in the development, maintenance, build, and test process.
Benefit from their distribution channels.
Get exposed to developers and a larger community.
For new projects, these organizations provide some mentoring.

Incubator type of projects.
Having access to the resources of the large group (hardware, testing, experimental data for validation, etc.).
Benefit from the process for resolving conflicts (social engineering).
 

However the benefits in term of getting access to software developers are somewhat limited when advanced technical domain 
knowledge is required in order to do the software development.

There is a need to have foster and organize open source communities that are vertical within each discipline area.

Build:
Build as often as you can. Don't leave the build broken for a long period of time.
Provide incentives to developers for correct builds after commits.
Should build everything and not partial. It should go all the way to the end (packaging).

For packaging you should use tools to make makefiles to ensure that system dependent info.
Use a clean machine as possible.

Do not make assumptions about all the external packages that  you may need.
Clean room build.
Cannot depend on third party repositories and have self-contained installation.

XSeed should provide more build and test facilities.
Test

Static and dynamic test analysis. Static analysis for covering cases in which regression tests are not covered.
It should be easy to add new tests. Nice user interface.
Testing and V&V in the case of unreliable hardware.

Verification & Validation
Model-checkers. Temporal state analysis.

 Some of those tools do not even apply in scientific codes, no floats.
Different code bases are often used for verification?
Perform static analysis using tools that does find bugs. Static analysis is more testing than verification.
Validation is often compared against experimental results.



Hard to validate simulation type codes for which you do not have experimental results.
Validate against analytical solutions.
Compare the results against other tools.

Integration
Standardization and defining interfaces.
Understanding the conceptual interfaces.
The hard work is the design of the abstract interface.
Need to educate and police people to adhere to a given standard.
Trial and error.

Best practice: security firedrill. How do you deal when a security whole is found. This applies to software that need to have root access. How do you 
disclose? There are many issues?


	Software engineering and integration issues

