
GeoServer Focus Group Final Report
Yong Wook Kim

Jong Lee

Rob Kooper

Todd Nicholson

Maxwell Burnette

Chen Wang

GeoServer

an open source software server written in Java that allows users to share and edit geospatial data. Designed for interoperability, it publishes data
from any major spatial data source using open standards.
serves data using standard protocols established by the Open Geospatial Consortium

Table of Contents

GeoServer Services
Basic manipulation using python
Using GeoPackages in GeoServer
Using PostGIS in GeoServer
Issues found
Suggestions

GeoServer Deployment Options (Docker, Kubernetes)

Native

basic option https://docs.geoserver.org/stable/en/user/installation/index.html
install GeoServer package and create standalone server.

Docker

Here is the link to geoserver docker instructions: https://opensource.ncsa.illinois.edu/confluence/display/CATS/Deploying+Geoserver
pull request for adding yml files : https://github.com/clowder-framework/clowder/pull/204
run geoserver and extractors in docker.

Kubernetes

deploy by creating deployment, service, and ingress
use helm chart created by Rob Kooper https://artifacthub.io/packages/helm/ncsa/geoserver

GeoServer Services

services are the primary way of supplying geospatial information

Web Map Service (WMS)
Web Feature Service (WFS)
Web Coverage Service (WCS)
Web Processing Service (WPS)
Web Map Tiling Service (WMTS)
Catalog Services for the Web (CSW)

Web Map Service (WMS)

supports requests for map images (and other formats) generated from geographical data.
provides a standard interface for requesting a geospatial map image.
clients can request images from multiple WMS servers, and then combine them into a single view for the user.
images can all be overlaid on one another as they actually would be in reality.
GeoServer supports WMS 1.1.1, the most widely used version of WMS, as well as WMS 1.3.0.
PNG, PNG8, JPEG, JPEG-PNG, JPEG-PNG8, GIF, TIFF, TIFF8, GeoTIFF, GeoTIFF8, SVG, PDF, GeoRSS, KML, KMZ, OpenLayers, UTFGrid
Example

https://wiki.ncsa.illinois.edu/display/~ywkim
https://wiki.ncsa.illinois.edu/display/~jonglee
https://wiki.ncsa.illinois.edu/display/~kooper
https://wiki.ncsa.illinois.edu/display/~toddn
https://wiki.ncsa.illinois.edu/display/~mburnet2
https://wiki.ncsa.illinois.edu/display/~wang23
https://docs.geoserver.org/stable/en/user/installation/index.html
https://opensource.ncsa.illinois.edu/confluence/display/CATS/Deploying+Geoserver
https://github.com/clowder-framework/clowder/pull/204
https://artifacthub.io/packages/helm/ncsa/geoserver

https://<geoserver_url>/geoserver/incore/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&FORMAT=image%
2Fpng&TRANSPARENT=true&tiled=true&name=tiledLayer&STYLES=&LAYERS=<layer_name>&WIDTH=256&HEIGHT=256&SRS=EP
SG%3A4326&BBOX=-90%2C34.98046875%2C-89.82421875%2C35.15625

Web Feature Service (WFS)

supports requests for geographical feature data (with vector geometry and attributes).
defines the framework for providing access to, and supporting transactions on, discrete geographic features
users have access to the source spatial and attribute data in a manner that allows them to interrogate, style, edit (create, update, and delete), and
download individual features.
requests

GetCapabilities
request to a WFS server for a list of the operations and services, or , supported by that servercapabilities

DescribeFeatureType
requests information about an individual feature type before requesting the actual data.
request a list of features and attributes for the given feature type, or list the feature types available.

GetFeature
returns a selection of features from the data source
output formats: GML2, GML3, Shapefile, JSON, JSONP, CSV

examples
Filtering for selection

https://<geoserver_url>/geoserver/<workspace>/ows?service=WFS&version=1.0.0
&request=GetCapabilities&CQL_FILTER=<field_name>=%27<value>%27

Output as Json Format
https://<geoserver_url>/geoserver/<workspace>/ows?service=WFS&version=1.0.0
&request=GetCapabilities&CQL_FILTER=<field_name>=%27<value>%27&outputFormat=JSON

Output as Shapefile
https://<geoserver_url>/geoserver/<workspace>/ows?service=WFS&version=1.0.0
&request=GetCapabilities&CQL_FILTER=<field_name>=%27<value>%27&outputFormat=shape-zip

Web Coverage Service (WCS)

supports requests for coverage data (rasters)
provides a standard interface

how to request the raster source of a geospatial image.
return an image only used as an image

results can be used for complex modeling and analysis
contains more information.

allows more complex querying
can extract just the portion of the coverage.
output formats

JPEG, GIF, PNG, Tiff, BMP
GeoTiff, GTopo30, ArcGrid, Gzipped ArcGrid

requests
GetCapabilities

request a list of what operations and services (“capabilities”) are being offered
DescribeCoverage

request additional information about a Coverage
returns information about
crs, the metadata, the domain, the range and the formats.

GetCoverage
requests the actual spatial data.
can retrieve subsets of coverages
result can be either the coverage itself or a reference to it.
most powerful thing is an ability to subset domains (height and time) and ranges.
can also do resampling, encode in different data formats, and return the resulting file in different ways

examples
GetCapabilities

https://<geoserver_url>/geoserver/<workspace>/ows?service=WCS&version=2.0.0&request=GetCapabilities
DescribeCoverage

http://<geoserver_url>/geoserver/<workspace>/ows?service=WCS&version=2.0.0
&request=DescribeCoverage&coverageId=<coverage_id>

GetCoverage
http://<geoserver_url>/geoserver/<workspace>/ows?service=WCS&version=2.0.0
&request=GetCoverage&coverageId=<coverage_id>

Web Processing Service (WPS)

an OGC service for the publishing of geospatial processes, algorithms, and calculations
available as an extension for executing operation for data processing and geospatial analysis.
results of a process can be stored as a new layer in the GeoServer catalog.
WPS acts as a full remote geospatial analysis tool, capable of reading and writing data from and to GeoServer.
https://docs.geoserver.org/stable/en/user/services/wps/index.html
requests

GetCapabilities
http://<geoserver_url>/geoserver/ows?service=WPS&version=1.0.0&request=GetCapabilities
DescribeProcess

https://docs.geoserver.org/stable/en/user/services/wps/index.html

Execute

Web Map Tiling Service (WMTS)

an OGC standard currently undergoing ratification
Geoserver has the ability to proxy a remote Web Map Tile Service (WMTS)
Loading a remote WMTS is useful for many reasons.
If you don’t manage or have access to the remote WMTS, you can now manage its output as if it were local.
Even if you don’t have any control on the remote WMTS, you can use GeoServer features to treat its output (watermarking, decoration, printing,
etc).

Catalog Services for the Web (CSW)

supports retrieving and displaying items from the GeoServer catalog using the CSW service
requests

GetCapabilities
GetRecords
GetRecordById
GetDomain
DescribeRecord

examples
GetCapabilities

https://<geoserver_url>/geoserver/ows?service=csw&version=2.0.2&request=GetCapabilities
GetRecords

https://<geoserver_url>/geoserver/ows?service=CSW&version=2.0.2&request=GetRecords&typeNames=gmd:
MD_Metadata&resultType=results&elementSetName=full&outputSchema=http://www.isotc211.org/2005/gmd

GetRecordById
https://<geoserver_url>/geoserver/ows?service=CSW&version=2.0.2
&request=GetRecordById&elementsetname=summary&id=<dataset_id>&typeNames=gmd:
MD_Metadata&resultType=results&elementSetName=full&outputSchema=http://www.isotc211.org/2005/gmd

GetDomain
https://<geoserver_url>/geoserver/ows?service=csw&version=2.0.2&request=GetDomain&propertyName=Title

DescribeRecord
https://<geoserver_url>/geoserver/ows?service=CSW&version=2.0.2&request=DescribeRecord&typeName=gmd:MD_Metadata

Basic manipulation using Python

Gsconfig-py3

https://pypi.org/project/gsconfig/
python3 library for manipulating a GeoServer instance via the GeoServer RESTConfig API
installation

Pip
pip install gscofig-py3

Manual installation

git clone git@github.com:boundlessgeo/gsconfig.git
cd gsconfig
python setup.py develop

catalog
Set up catalog

from geoserver.catalog import Catalog
cat = Catalog("http://geoserver_url/geoserver/rest/", "admin", "geoserver")
note /rest/ at the end of the url

workspace

get all the workspaces
cat.get_workspaces()

#filter which workspace to return
cat.get_workspace(“any workspace name”)

#filter which stores to return
cat.get_store(“store name”, “workspace name”)

http://www.isotc211.org/2005/gmd
http://www.isotc211.org/2005/gmd
https://pypi.org/project/gsconfig/
https://pypi.org/project/gsconfig/

upload shapefile

construct geoserver catalog
cat = Catalog(gs_url, gs_user, gs_pw)

set workspace, if the workspace is not there, it has to be created
worksp = cat.get_workspace(gs_workspace)

create the list object related to shapefile (including shp, prj, shx, dbf)
shapefile_plus_sidecars = gs_util.shapefile_and_friends(filename)

upload shapefile
ft = cat.create_featurestore(filename, shapefile_plus_sidecars, worksp)

upload raster

construct geoserver catalog
cat = Catalog(gs_url, gs_user, gs_pw)

set workspace, if the workspace is not there, it has to be created
worksp = cat.get_workspace(gs_workspace)

upload raster data
cat.create_coveragestore(out_name, in_tif, worksp)

Using GeoPackage in GeoServer

GeoPackage

https://www.geopackage.org/
The GeoPackage Encoding Standard describes a set of conventions for storing the following within an SQLite database:

vector features
tile matrix sets of imagery and raster maps at various scales
attributes (non-spatial data)
Extensions

OGC GeoPackage specification 1.0.1 published in year 2015
Latest version 1.3.0 in year 2020 ()https://www.geopackage.org/spec130/index.html

Implementations

GDAL
Vector Features and Tiles (raster) since v2.0

QGIS
Vector Features (read/write) since 2.10.1
Tiles(read)since2.18

Geoserver
GeoPacakge plugin
Handle both Vector Features and Tiles

ESRI ArcGIS
Vector features (since ArcGIS 10.2.2)
Tiles (since ArcGIS 10.3

GeoTools
Vector Features and Tiles (raster) since 11.0
Recently added GeoPackage R-Trees

NGA open source lib
http://ngageoint.github.io/GeoPackage/
OGC certified

https://www.geopackage.org/implementations.html

A Quick Comparison

ESRI Shapefile GeoPackage

Multiple files (.shp, .shx, .dbf, .prj) Single file

Limitation because of DBF (10 ch length for column names) No limitations like DBF

1 Shapefile has1 Feature Type (Road.shp has “road” feature type) 1 GeoPackage could have multiple Feature Types

https://www.geopackage.org/
https://www.geopackage.org/spec130/index.html
http://ngageoint.github.io/GeoPackage/
https://www.geopackage.org/implementations.html

Can’t contain Raster data It contains raster data and other attribute tables

Galveston buildings shapefile (40.7 MB) Galveston buildings geopackage (3.66 MB)

GPKG Support in Geoserver

GeoPackage is Core Functionality of Geoserver
Vector: https://docs.geoserver.org/latest/en/user/data/vector/geopkg.html
Raster: https://docs.geoserver.org/latest/en/user/data/raster/geopkg.html

GeoPackage Extension (Community plugin)
https://docs.geoserver.org/latest/en/user/community/geopkg/
The GeoServer GeoPackage extension also allows to create a completely custom made GeoPackage with multiple layers, using the
GeoPackage process.

Uploading GeoPackage to Geoserver

Using Geoserver REST endpoints
https://docs.geoserver.org/latest/en/user/rest/index.html#rest
Uploading geopackage (or ESRI shapefile) means creating a store at Geoserver

https://docs.geoserver.org/latest/en/user/rest/stores.html

curl-v-u<USR>:<PASSWORD> -XPUT-H"Content-type: application/zip"
--data-binary@<PATH&FILENAME.ZIP>http://<HOSTNAME>:<PORT>//geoserver/rest/<WORKSPACE>/datastores/<FILENAME>
/file.shp

curl -v -u <USR>:<PASSWORD> -XPUT -H "Content-type: application/x-sqlite3"
--data-binary @<PATH&FILENAME.GPKG> http://<HOSTNAME>:<PORT>/geoserver/rest/workspaces/<WORKSPACE>/datastores
/<FILENAME>/file.gpkg

Using Jetty Httpclient
Reason:

Current Geoserver manager java library is using Apache Common Http component (old version)
If I install another version (latest apache httpclient), there maybe a class loading issues.

Using in PostGIS Geoserver

Comparison of adding a shapefile to Geoserver vs. adding a geopackage file created from QGIS vs. adding a Postgres entry (all of same large dataset
with 185k+ polygons).

Performance test results:

When loading a large shapefile in entirety (i.e. display everything with no filter), the SHP was generally faster. PSQL would return an entire state of census
blocks in ~900ms while the Shapefile version was around 450ms.

https://docs.geoserver.org/latest/en/user/data/vector/geopkg.html
https://docs.geoserver.org/latest/en/user/data/raster/geopkg.html
https://docs.geoserver.org/latest/en/user/community/geopkg/
https://docs.geoserver.org/latest/en/user/rest/index.html#rest
https://docs.geoserver.org/latest/en/user/rest/stores.html

However, with any sort of spatial or property filtering applied, which will likely be the typical case for many projects, PSQL is significantly faster with proper
index, ~161ms for a property filter vs. 500-1200ms for Shapefile.

Geopackage was generally the slowest, and I couldn't find an effective means to improve performance. Geopackage does generate a SPATIAL index that
could mean good performance in tasks that are filtered by bounding box, but for our typical use case of filtering by property, performance was worse than a
shapefile locally.

Repeat each x20. SHP Geopackage PSQL

Full dataset, no filter 450ms 1200ms+ 900ms

With filtering (bounding box, property) 500-1200ms 670ms-1200ms 160ms

Presence of indexes in PSQL database is important for performance. Also storing data in db can save disk space because shapefile is not saved in
data_dir.

Uploading Styles dynamically

curl -u admin:geoserver -XPUT -H "Content-type: text/xml" -d "<layer><defaultStyle><name>GPP7_4km_Dekad<
/name><workspace></workspace></defaultStyle></layer>" http://127.0.0.1:8080/geoserver/rest/layers
/GPP7_4km_Dekad:GPP7_4km_Dekad.2010.04.Early.tif.xml

content-type xml isn't enough, you need an Accept header or to append format onto URL. .xml should be appended to end.

GPP7_4km_Dekad is the style name, and is the layer name. Both of these exist GPP7_4km_Dekad:GPP7_4km_Dekad.2010.04.Early.tif

Issues Found

Problems confronted in deploying Kubernetes

Stickiness problem?
only single instance works

Some containers not working with GUI
pagination

Data migration
hard coded path in *store.xml

Loading time when restart
check the log level

Check SRS for the layers

Suggestions

Possible Question from the users
Data size

Loading number of datasets

Raster, geoserver PostGIS raster.
GeoWebcache image pyramid
Data sharing for geoserver and others.
Multiple instances

	GeoServer Focus Group Final Report

