DTl C3 Al Suite Quickstart Guide

Terminology
C3 Cluster Overview
Provision a C3 Al Package
Connecting to the C3 Al Suite
© Accessing the Static Console
Using the Static Console
Tutorial Video
Console Commands
Official C3 Al Training Materials on Static Console
© Using Python with the C3 Al Suite
® Fetching Instances of C3 Types
© Examples of Fetch Calls
© Tutorial Video
© The fetchCount Method
® Converting Fetch results to usable forms in Jupyter Notebook
© Python
® ExpressionEngineFunctions
® Computations on C3 Types using Evaluate
® Developing Metrics on Timeseries data
© Timeseries Video Tutorial
O Simple Metrics
© Compound Metrics
© Finding, Evaluating, and Visualizing Metrics
" Finding Metrics
" Evaluating Metrics
© Additional Resources
® Review and Next Steps

[e]
[e]
[e]
[e]

The C3 Al Suite provides researchers many tools to analyze data and build and deploy machine learning models. This guide explains how to connect to
the C3 Al Suite, access data using C3 Al methods, and convert C3 Al method outputs to an easy-to-analyze form. Additionally, the guide also provides
more detailed instructions to DTI members using the Covid-19 Data Lake. Examples in this guide rely on the 'baseCovi dDat aLake' package available in
this git repository.

Please note, this guide covers how to query data from the C3 Al Suite. For more advanced topics such as loading data, building metrics, or configuring
and training machine learning models, please refer to the following wikis:

® Data Integration (Not yet available)
® Metrics (Not yet available)
® Machine Learning (Not yet available)

Terminology

To best understand the C3 Al Suite and this guide, let's introduce key terminology used by C3 Al Suite developers:

* Type: Nearly all aspects of the C3 Al Suite (e.g., data, machine learning models, cloud-provider microservices) are stored and accessed through
Types. C3 Al Types are logical objects akin to a Java class, and contain ‘'fields' and 'methods’'. Some Types are persisted to internal databases
(like Postgres or Cassandra), while others are not.

Field: A field of a Type. Fields contain attributes or data associated with the Type.

Method: A method declared on a Type. Methods define business logic associated with the Type.

Vanity Url: The URL at which a specific tenant/tag of a C3 Cluster can be accessed.

Cluster: A deployment of the C3 Al Suite. A C3 Cluster is a collection of hardware or virtualized cloud instances (e.g., servers, databases, load
balancers) used to run the C3 Al Suite and C3 Al Applications. The C3 Al Suite can run on any public or private cloud infrastructure or on a local
machine (in a docker container).

® Tenant: A logical partition of a C3 Cluster. All tenants in a cluster generally share the same compute and storage resources. Data within tenants,
while stored in a single database, are logically separated. C3 Al Suite users on one tenant can't see data stored on another tenant. In other
words, users are only able to view data for tenants to which they are explicitly granted access.

Tag: A logical partition of a tenant. A single tag hosts one C3 Al application (deployed package).

Package: All the code a developer writes for an application. The C3 Al Suite runs a package on a tag.

Provisioning: Deploying a package onto a tenant/tag in a C3 Cluster.

Static Console: A browser-based tool that C3 Al developers use to interact with the C3 Al Suite. Static console is available on all modern
browsers, including Google Chrome, Mozilla Firefox, and Apple Safari. Developers use the console to query data, evaluate expressions, view
documentation, monitor environments, develop and test code, and manage environment configurations. You can access the static console at the
url'https://<vanity_url>/static/consol e' (replacing <vani ty_ur| > with your Vanity Url).

® Metric: Expressions that transform raw data into a time-series.

C3 Cluster Overview

https://github.com/c3aidti/dtiTraining

The C3 Al Suite is a Platform as a Service (PaaS), which enables organizations to build, deploy, and operate enterprise-scale Big Data, Al, and 10T
applications. The C3 Al Suite can be deployed on any private or public cloud infrastructure such as AWS, Azure, and Google Cloud Platform. When
developing and operating applications, a C3 cluster is responsible for managing and supporting all the features of the C3 Al Suite. A C3 Cluster has at
least one Master node and many Worker nodes. Master nodes prioritize and distribute jobs to Worker nodes and handle user requests. Worker nodes
carry out jobs, allocated by the Master node. Other components of a C3 Cluster include databases (e.g., Postgres, Cassandra, Azure Blob), logging
services (i.e., Splunk), and Jupyter. Atop these hardware or virtualized cloud resources is a logical software structure, with the highest level being a
Cluster. A C3 Cluster is broken out into numerous tenants. Tenants are logically separated from each other (i.e., a particular tenant's data and packages
are not accessible or visible to any other tenants), and contain many tags. Tags host C3 Al Packages (i.e., the code that C3 Al developers write and
provision to the C3 Al Suite). A typical multi-tag, multi-tenant C3 Cluster is shown in a logical diagram below:

Cluster ,"T"'t""_'ﬁ' 'd' Cmmmmmmmmo mmmmmmm—— 1
(e.g., dti) 1 lenan (e.g-, gifford) I Tag (e.g., I | Tag (e.g., 1 :
: ! giffordidev) ! | gitfordiprod) Loy
: | 1o 1 :
| S I R B
| e e e e e e e e e e e e e e e I
r—E—=—=-=-"=-"=-"=-"=-"=-"=-"=-"=-"=-"=-"="=-"=-"="="="="="="="="=====-"==== ';
: Tenant (e.g., bertsimas) I
I

: i
1 I
1 I
I]
| o o o o e e e e o e e e e e e e e e L . I
- - - - - = = = = = = ===-=======""=""=""=""="¥"="="/==-"== ';
: Tenant (e.g., rapti) I
I

: |
I I
1 I
1 I
P |

To learn more about the architecture of a C3 cluster, please see the training materials here:

® Developer Documentation

© https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/arch-home

© https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/arch-clusters-tenants-and-tags
® (C3.ai Academy Videos:

© Packages

o Clusters, Tenants, and Tags

Provision a C3 Al Package

To provision a package to your tag, follow the instructions available at the DTI Guide: Provisioning.

To run the examples in this guide you will need to provision the 'baseCovi dDat aLake' by following the directions in the 'COVID-19 Data Lake
Provisioning' section.

To learn more about provisioning, please see the C3 Al Develop Documentation here:
® Developer Documentation
© https://developer.c3.ai/docs/7.12.17/topic/arch-provisioning

® C3.ai Academy Videos:
© Provisioning

Connecting to the C3 Al Suite

https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/arch-home
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/arch-clusters-tenants-and-tags
https://learnc3.litmos.com/course/3802332/module/7466213/Scorm?LPId=118058&Review=False&Reattempt=True
https://wiki.ncsa.illinois.edu/display/C3aiDTI/DTI+Guide%3A+Provisioning
https://learnc3.litmos.com/course/3802332/module/7466213/Scorm?LPId=118058&Review=False&Reattempt=True
https://learnc3.litmos.com/course/3802332/module/7466213/Scorm?LPId=118058&Review=False&Reattempt=True

The static console is the main tool that developers use to interact with the C3 Al Suite. However, we anticipate that most DT members will use Python (via
Jupyter notebook) for data analysis. That being said, the static console is an essential part of working with the C3 Al Suite and you will use it frequently.
For example, the static console is the best place to find documentation tailored directly to your package. It's also a great place to quickly test queries as no
specialized environments need to be set up to use it. Static console is ready-to-go in all modern browsers, including Google Chrome, Mozilla Firefox, and
Apple Safari.

Accessing the Static Console

Once you have provisioned a package to your tag, navigate to the static console page at this url: 'htt ps: // <vanity_url >/ stati c/ consol €'
(replacing <vani t y_ur | > with your Vanity Url provided in your C3.ai DTI Training Cluster Onboarding Email). The static console page looks like this:

< Cc @ © | @ https://dti-mkrafczyk.c3dti.ai/s

mode: test; 30 metadata warnir
i c3Context() LY TOrT |

hostname makeValidate makeDeeply I currency env typeSystemSupport compatibility lastAction

https://dti-mkrafczyk c3dti.al dti-mkrafczyk.c3dti.ai mkrafcz2@illinois.edu i mkrafczyk true true en-US USD client-browser typesOnly js, methodDebug true

O hostUrl: hitpsz//dti-mkrafczyk.c3dti.ai
O hostname: dii-mkrafczyk.cadti.al
0 usemame: mkrafcz2@illinois.edu
O tenant: dti
O tag: mkrafczyk
O makeValidate: true
0 makeDeeply: frue
O locale: en-US
O currency: USD
O env: client-browser
0 typeSystemSupport: typesOnly.js. methodDebug
O compatibility: true
lastAction
0O name: poll
0O params: {}
O profile: function(duration){c3Table(LogProfiler profile({duration-duration]|*4h" rid-this.id}))}

The 'Tools' drop-down menu in the upper left-hand corner contains a list of available developer tools. The most relevant tool is the Provisioner, though
there are also utilities for loading JavaScript files, debugging JS code, and inspecting Errors.

B LoadFile :
| Breakpoints
nhltp ci-mkra
Options
@ Tab Title
or i Grid 3t ai
O @ visualizer i
Ou du
On P Tester
Ot # Provisioner
On
Or @ Erors
Ol Health Check
O
0c¢ = Types
O typeoysemauppun. wpeswayjs.methodD
O compatibility: true

The 'Help' drop-down menu in the upper left-hand corner allows users to access console documentation and a C3 Cluster hosted documentation portal.

mode: test; 30 metg

B Console Commands
#: c3Context 2 Documentation

hostUrl
n hitps://dti-mkrafczyk.c3di.ai dti-mkrafczyk.c3dti.ai mH

Most tools are also accessible through a series of icons in the upper right-hand corner:

oprH»0020

ypeSystemSupport compatibility lastAction

ypesOnly,js,methodDebug true

Using the Static Console

Developers interact with the static console through the JavaScript console tab in the browser. When the static console page loads (or when you run the c3I
nmpor t Al | () command), JavaScript methods associated with all of your Package's defined Types are populated. You can write and run JavaScript code

directly in the console tab to interact with your package.

You can also open Javascript console with the 'Ctrl+Shift+I' keyboard shortcut (in most browsers). Javascript console is also available through the
browser's developer tools. If the 'Ctrl+Shift+I' keyboard shortcut doesn't work for you, review your browser's documentation on developer tools. Here's how

the static console looks in Firefox, with the JavaScript console open:

n https:/idti-mkrafczyk c3dti.ai dii-mkrafczyk c3dti.ai mkrafcz2@illinois.edu dti

mkrafczyk frue

O hostUrl: httpsz/dti-mkrafezyk.c3dti.ai
O hostname: dti-mkrafczyk.c3dti.al
0O username: mkrafcz2@illinois.edu
O tenant: dti
O tag: mkrafczyk
O makeValidate: true
O makeDeeply: true
O locale: en-US
O currency: USD
0O env: client-browser
O typeSystemSupport: typesOnly.js.methodDebug
O compatibility: true
lastAction
O name: poll
O params: {}

0O profile: function(duration){c3Table(LogProfiler profile({duration-duration] ["4h" rid-this.id})}

¥
»

Console

®
w

Errors Warnings

O Inspector Debugger

Logs Info Debug

A This page uses the non standard property "z

Consider using calc() in the relevant proper

o".

Layout was forced before the page
was fully loaded. If stylesheets
are not yet loaded this may cause
a flash of unstyled content.

Synchronous XMLHttpRequest on the main
thread is deprecated because of its
detrimental effects to the end user’s
experience. For more help

//xhr. spec.whatwg.org/

Starting in default tag dti / mkrafczyk
onmozfullscreenchange is deprecated.
onmozfullscreenerror is deprecated.

Imported 5393 types (all) from dti / mkrafczyk
in 155

evaluate ~ |~ | Highlight All

Match Case

Match Diacritics

Whole Words

N @

_espond-1.4.2.min. js:4:

® f?
4] = X

*E

€SS XHR Requests

. console
values,

or using "transform” along with "transform-origin: 0

env_browser.js:83:4

main. js
main. js:

main. js:

main. js:

Finally, let's write some JavaScript commands to see the console in action!

Jdti-mkra

2000+ results

‘AsirRegion_SaudiArabia

65550 ‘Asir Region, SA state

tiorType

2211875

Consider u
or
0.

using

A\ Layout was forced before the page .espond-1.4
_AndhraPradesh_India 1 EP_LOC was fully loaded. If stylesheets
&) 00002318-602c-4275-006c-51d05040¢736 1 EP_LOC are not yet loaded this may cause
a flash of unstyled content.
el 00028416-3ect 412b-b50-3t8c4deb5092 1 EP_LOG A Synche onous XULHEtpR=quest on) the) main
00030add-139e-4300-80d4-155896638ad1 1 EP_LOG HiEer) 35 ArEErisl] MEeeE oF fts
detrimental effects to the end user’s
Gl 000ae95¢e-2b6e-4160-a0a4-c609171b8b1b 1 EP_LOG experience. For more help
http://xhr.spec.whatwg.org/
Gl 000cb0dc-bB846-4309-9875-b4ac05fafb5 1 EP_LOC
Starting in default tag dti / mkrafczyk
ll 000e1249-313¢-4312-0707-788074319500 1 EP_LOG g a——
0014dfb8-467f-4b07-a80f-3eb5ealfd410 1 EP_LOC A onmozfullscreenerror is deprecated
00185107-49¢c8-40a2-b867-46abl1a5023e 1 EP_LOG Imported 5393 types (all) from dti / mkrafczyk
in 155
001c88¢7-e38d-4c6-De37-dcBDBY012dc 1 EP_LOC
» c3Grid(Outbreaklocation. fetch())
001d4844-27bc-4e69-8030-803066149323 1 EP_LOC u
»
O locationType: state
O populationCDS: 2211875
location:
value
O id: ‘AsirRegion_SaudiArabia
O timestamp: 2020-05-29T05:14:06.000Z
O id: ‘AsirRegion_SaudiArabia
O name: ‘Asir Region, SA
meta:
O tenantTagld: 4
0 tenant: covid
O tag: prod
O created: 2020-05-29T05:13:22.000Z
O createdBy: dataloader
O updated: 2020-08-04T15:25:34.000Z
O updatedBy: dataloader
M timactamn: 2020.N2.NAT15-27-04 NNNT.
evaluate | v | Highlight All Match Case Match Djacritics MWhole Words

.2.min.js:4

n @ e f
¥ O Inspector Console O Debugger > 0] = X
v £
Ermors Warnings Logs Info Debug — CSS XHR Requests
A\ This page uses the non standard property console

ng calc() in the relevant property values,
“transform” along with "transform-origin: 0

env_browmser.js:B3:4

main. js:3585:

main.js:3209:
main.js:3209:10

main.js:3270:15

Tutorial Video

The DTI Team have recorded a short video introducing and describing the static console functionality:

Your browser does not support the HTML5 video element

Console Commands
Here are common JavaScript console commands used on the static console page.

® c3ImportAll: A console command which loads all the C3 Types from your package into the static console. Always be sure refresh the static
console page or run c3l nport Al | () after provisioning a new package.

® c3Grid: A console command to display a table of data stored within a C3 Type. (e.g., data returned from a fetch operation, or an evaluate
operation among many others).

® c3Viz: A console command to produce quick visualizations or plots for some C3 Types. (e.g., time-series data like Eval Metri csResul t)

® c3ShowType: A console command to access documentation for a given C3 Type. (e.g., c3ShowType(Qut br eakLocat i on))

Official C3 Al Training Materials on Static Console

® Developer Documentation

© https://developer.c3.ai/docs/7.12.25/topic/console-home

o https://developer.c3.ai/docs/7.12.25/topic/console-documentation-via-console
® (C3.ai Academy Videos:

O Console Overview

© Console Orientation

Using Python with the C3 Al Suite

We anticipate most DTI researchers will want to use Python for data analysis. There are two options to connect to a C3 Cluster via Python. Please follow
the links below for detailed information about each.

® Use C3 integrated Jupyter Notebook
® Connecting to a C3 Cluster from a Remote Python Session

To learn more about the general structure of a C3 cluster, please see the resources here:

® Developer Documentation
O https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ds-home
O https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ds-python-apis
© https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ds-home
© https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ds-jupyter-notebooks
O https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/actionruntime
® (C3.ai Academy Videos:
© Python APIs
© Python Runtimes

Fetching Instances of C3 Types

All data in the C3 Al Suite are stored in C3 Types. Users can access data from a Type with the 'f et ch’ method. Behind the scenes, the 'f et ch' method
submits a query directly to the database underlying a Type, and retrieves and presents the query results.

The C3 Al Suite returns the 'f et ch' query's response, which includes:

® data from the Type itself;
* Metadata for the 'f et ch' query (e.g., the number of objects, whether additional data exists in the database) into the Fet chResul t type for data
analysis (see example below).

To learn more about the 'f et ch' method, please see the C3 Al resources here:

® Developer Documentation
© Fetching and Filtering: https://developer.c3.ai/docs/7.12.25/topic/tutorial-fetching-and-filtering
© Fetch and Filter Basics: https://developer.c3.ai/docs/7.12.25/topic/console-data-exploration-fetch-and-filters
© Fetch and Filter Advanced: https://developer.c3.ai/docs/7.12.25/topic/console-fetch-and-filters-advanced
® (C3.ai Academy Videos:
© Fetch & Filters

Users can also provide a FetchSpec (or parameters) to the 'f et ch' method to describe particular data to retrieve (e.g., only retrieve gene sequences
collected in Germany). The FetchSpec can be 'enpt y' (e.g., Qut br eakLocat i on. f et ch()), or contain several parameters to return a subset of the data.

Some example FetchSpec parameters include:
® filter: Filter expression to return a subset of the data (e.g., age <= 20). Filter expressions must evaluate to a Boolean type (i.e., true or false)

® |imit: The maximum number of rows that should be returned. Be default, if no limit is specified, the C3 Al Suite returns 2,000 rows from the C3
Type. Specifying a limit is often helpful to debug a fetch 'met hod' without returning too many records.

https://developer.c3.ai/docs/7.12.25/topic/console-home
https://developer.c3.ai/docs/7.12.25/topic/console-documentation-via-console
http://C3.ai
https://learnc3.litmos.com/course/3802340/module/7466371/Scorm?LPId=118058
https://wiki.ncsa.illinois.edu/display/C3aiDTI/C3+AI+Integrated+Jupyter+Notebook
https://wiki.ncsa.illinois.edu/display/C3aiDTI/Connecting+to+a+C3+Cluster+from+a+Remote+Python+Session
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ds-home
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ds-python-apis
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ds-home
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ds-jupyter-notebooks
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/actionruntime
http://C3.ai
https://learnc3.litmos.com/course/3802623/module/7566724/Scorm?LPId=118105
https://developer.c3.ai/docs/7.12.25/topic/tutorial-fetching-and-filtering
https://developer.c3.ai/docs/7.12.25/topic/tutorial-fetching-and-
https://developer.c3.ai/docs/7.12.25/topic/console-data-
https://developer.c3.ai/docs/7.12.25/topic/console-fetch-and-
https://learnc3.litmos.com/course/3802340/module/7466371/Scorm?LPId=118058

® include: Specifies the particular fields from a C3 Type to return to the FetchResult. By default, if no i ncl ude spec is defined, all fields from the
Type will be returned.
® order: Specifies the order to return the query's results (either "ascending" or "descending”).

Note: Please see the official FetchSpec documentation for a full list of parameters: https://developer.c3.ai/docs/7.12.17/type/FetchSpec

Examples of Fetch Calls

The Qut br eakLocat i on Type contains information from various locations for which the Covid-19 Data Lake has virus-related information. We can fetch O
ut br eakLocat i on records for which the 'l at est Tot al Popul at i on' field exists (i.e., is not null). We can also retrieve these records in descending
order by their ‘count r yAr ea”:

res = QutbreakLocation. fetch({

limt': -1,

"filter': 'exists(latestTotal Population)',

‘order': 'descending(l atestTotal Popul ation)',

"include': '"id, nane, |atestTotal Popul ation, popul ationCf All Children, countryArea, countryCode'

i3]

And we can show these results in the C3 Al static console using the ¢c3Gri d command:

5] DM: dri-mkrafczyk | Console | C3 Al Suite™ - Mozilla Firefox
Training Materials E DTI €3 Quickstart Guide X DM: dti-mkrafczyk | Co
<« C @ |© & https:/dti-mkrafc s v search m o e ;£ =
0 Inspector () Console [Debugger »» g] s X%
v 3
Errors Warnings Logs Info Debug €55 XHR Reguests
3443 results - » b res = OutbreakLocation. Fetch({
e
name d I : 'exists(latestTotalPopulation)’,
n N - : 'descending(latestTotalPopulation}',
] india 9437277 India 1656553632 1656553632 ©Ta, hame, latestToralPopulation,
W China 6226460 China 1301627048 1308870495 population0fAllchildren, countryArea, countryCode'..
” € » Object { objs: (3443) [.] nt: 3443 re: false,
] Nigeria 14024732 Nigeria 416996080 416996080 . ;JfP—ér& []]‘ e T e anonymous()
k) UnitedStates 8729806 UnitedStates 398328349 728888841 * ack: anonymo pack: an
R fieldValue: anony fieldsMap: anonyi }
B Indonesia 14155807 Indonesia 300183166 300183166
- » c3Grid(res)
B Pakistan 7602307 Pakistan 200847790 200847790 o et
i Brazil 7667743 Brazil 232304177 232304177 » @
fll Ethiopia 14221340 Ethiopia 228066276 228066276
i Bangladesh 14090270 Bangladesh 193092763 193092763
El Eqypt 14614559 Egypt 168937974 168937974
. I PR
0O latestTotalPopulation: 1656553632
O populationOfAIChildren: 1656553632
O countryArea: 2973193
0O countryCode: IN
O id: India
0O name: India
© meta:
O fetchinclude: [id.name, latest TotalPopulation. populationOfAlIChildren,countryArea countryCode version. typeldent]
O fetehType: OutbreakLocation
O version: 9437277
0O typeldent: EP_LOGC
k
You can run this same fetch in Python:
raw_data = c¢3. Qut breakLocation. fetch({
limtt: -1,
"filter': 'exists(latestTotal Population)',
‘order': 'descending(l atest Total Popul ation)',
"include': '"id, nane, |atestTotal Popul ation, popul ationCf All Children, countryArea, countryCode'

19

Additional details on "Fetching in Python" are available in this C3 Al Developer documentation: https://developer.c3.ai/docs/7.12.25/topic/ds-jupyter-
notebooks

Additional examples of fetch calls can be found here:

® https://github.com/c3aidti/casesExample
® https://github.com/c3aidti/genomicsExample

https://developer.c3.ai/docs/7.12.17/type/FetchSpec
https://developer.c3.ai/docs/7.12.25/topic/ds-jupyter-notebooks
https://developer.c3.ai/docs/7.12.25/topic/ds-jupyter-notebooks
https://github.com/c3aidti/casesExample
https://github.com/c3aidti/genomicsExample

® https://github.com/c3aidti/HouseCoverageExample
® https://github.com/c3aidti/VaccineListing
® https://github.com/c3aidti/EpidemiologyExample

Tutorial Video
This tutorial video goes over fetching and filtering:

Your browser does not support the HTML5 video element

The fetchCount Method

Another useful command is 'f et chCount . Like 'f et ch’, users can also provide a FetchSpec (or parameters) to 'f et chCount '. The 'f et chCount '
method then returns the number of records that match the FetchSpec. This is useful when trying to determine whether a given search is refined enough.

Qut breakLocation. fetchCount({'filter': 'exists(latestTotal Population)'})

You can run the same 'f et chCount ' in python:

c3. Qut breakLocati on. fet chCount (spec={"filter': 'exists(latestTotal Population)'})

To learn more about the 'f et chCount ' method, please see the f et chCount method definition in the Persistable Type documentation: https://developer.
c3.ai/docs/7.12.25/type/Persistable

Converting Fetch results to usable forms in Jupyter Notebook

When using a Jupyter Notebook, C3 Al developers typically modify FetchResults for data analysis. This section shows a couple of ways to convert
FetchResults into easy-to-analyze forms.

Python

In python, first retrieve the 'obj s’ field from the FetchResults object, and then call the t oJson() function. The t oJson() function returns an array of
dictionaries each with keys equal to the requested fields of the fetched C3 Type. Using the Pandas library, this array can be turned into an analysis-ready
DataFrame, as the below example shows:

i nport pandas as pd

df = pd. Dat aFr ane(raw_dat a. obj s.toJson())
df . head()

df . drop(' meta', axis=1, inplace=True)

df . drop('type', axis=1, inplace=True)

df . drop(' version', axis=1, inplace=True)
df .drop('id', axis=1, inplace=True)

df . head()

https://github.com/c3aidti/HouseCoverageExample
https://github.com/c3aidti/VaccineListing
https://github.com/c3aidti/EpidemiologyExample
https://developer.c3.ai/docs/7.12.25/type/Persistable
https://developer.c3.ai/docs/7.12.25/type/Persistable

In [5]: df = pd.DataFrame(raw_data.objs.toJson())
df.head()
df.drop('meta', axis=1, inplace=True)
df.drop('type', axis=1, inplace=True)
df.drop('version', axis=1, inplace=True)
df.drop('id"', axis=1, inplace=True)

df.head()
Out[5]:

typeldent name latestTotalPopulation populationOfAllChildren countryArea countryCode
0 EP_LOC India 1.656554e400 16565542409 2973193.0 IM
1 EP_LOC China 1.301627e+09 1.308870e+09 MNaM MNaM
2 EP_LOC Migeria 4.169961e+08 4 169961e+08 910768.0 M
3 EP_LOC UnitedStates 3.983283e+08 7.288888e+08 9148655.0 s
4 EP_LOC Indonesia 3.001832e+08 3.001832e+08 1811569.0 ID

Users can then manipulate the resulting DataFrame, using common programming libraries and frameworks.

ExpressionEngineFunctions

The C3 Al Suite also provides a pre-built library of "ExpressionEngineFunctions". Expression Engine Functions take a variety of arguments and perform
various data processing tasks. For example, the function 'cont ai ns' takes two strings as arguments and checks whether the first argument contains the
second argument. The function 'l ower Case' takes as input a string and returns that same string with all lowercase letters. In addition to these string
processing functions, the C3 Al Suite's ExpressionEngine includes many math functions (such as 'l og’, 'avg', and 'abs") which operate on various input
data types (e.g. i nt, doubl e, f1 oat).

The ExpressionEngine Functions are used in several places, such as:
* ‘fetch'filters
® Simple and compound metric expressions
® tsDecl metric values
To learn more about ExpressionEngineFunctions, please see the C3 Al resources here:
® Developer Documentation
© https://developer.c3.ai/docs/7.12.25/type/ExpressionEngineFunction

® (C3.ai Academy Videos:
O ExpressionEngineFunctions

Computations on C3 Types using Evaluate

Using the 'eval uat e' method, developers can run aggregations or other computations on data fetched from a C3 Type. (e.g., compute the average area
across all countries with area data available, in the Qut br eakLocat i on Type).

The 'eval uat e' method takes several parameters:

® projection: [Required] A comma-separated list of expressions (from the ExpressionEngineFunction library) to apply to data from a C3 Type (e.g.,
avg, uni que, m n, max). You can simply think about a projection as the columnsf/fields, calculated or otherwise, which the "eval uat e" method
should return.

® group: A comma-separated list of columns/fields, to group the aggregated/transformed data by (e.g, compute the average area by the 'l ocati on
Type' field in Qut br eakLocat i on). Please note, in any 'eval uat e' command, all columns in the 'group’ field MUST ALSO BE in the 'pr oj ect i
on' field, as the example below shows.

® having: A SQL style having clause.

® order: A comma-separated list of columns/fields, to order aggregated/transformed data by. Users can access data in 'ascending' or 'descending'
order. Please note, in any 'eval uat e' command, all columns in the 'order’ field MUST ALSO BE in the 'pr oj ect i on' field.

® filter: A filter expression that restricts the rows in a C3 Type on which the eval uat e method is run.

In static console, 'c3G i d' displays the 'eval uat e' method results nicely:

(Note: the 'locationType' expression within the 'group’ field is also within the 'projection’ field. This is required.)

var eval _result = QutbreakLocation. eval uate({
'projection': 'avg(countryArea), |ocationType',

https://developer.c3.ai/docs/7.12.25/type/ExpressionEngineFunction
http://C3.ai
https://learnc3.litmos.com/course/3802360/module/7466566/Scorm?LPId=118058

‘group': 'locationType',
"filter': 'exists(countryArea) && exists(locationType)'

9]
c3Gid(eval _result)

[® 1O Inspector [J Conscle IO Debugger » 0] = X
W v 4

Errors Warnings Logs Info Debug C55 XHR Requests

mode: test; 30 metadata warnings

&2 EvaluateResult

M This page uses the non standard property “zoom". console
Consider using calc() in the relevant property values,
c0 cl or using "transform” along with "transform-origin: 0
W) 627982 3684848485 country o
#A Layout was forced before the page .espond-1.4.2.min.js:4:3956
)l 2085.8 state was fully loaded. If stylesheets

are not yet loaded this may cause
a flash of unstyled content.

M Ssynchronous XMLHttpReguest on the main env_browser.js:83:4
cells: thread is deprecated because of its
. detrimental effects to the end user's
0: experience. For more help
O number: 627382 3684848485 http://xhr. spec.whatwg.org/
1 Starting in default tag dti / mkrafczyk main.js:3585:13
sir: countr =
o Y 4\ onmozfullscreenchange is deprecated. main.js:3209:10
#A onmozfullscreenerror is deprecated. main.js:3209:10
Imported 5393 types (all) from dti / mkrafczyk main.js:3270:15
in 11s
» pwvar eval_result = QutbreakLocation.evaluate({
‘projection’: 'avg(countryArea), locationType®,
"group': "locationType',
‘filter': ‘exists{countryArea) && exists(locationType}’
Fha
€ undefined
» L

Users can also run the 'eval uat e' method in python. In this case, users often modify the ‘eval uat e' method's results for data analysis. To view and
analyze the 'eval uat e' method's results in Python, please use the helper function available in C3 DTI's c3python module here: https://github.com/c3aidti
/c3python

NOTE: The 'locationType' expression within the ‘group’ field is also within the 'projection’ field. This is required.

eval _spec = {

'projection': '"avg(countryArea), |ocationType',
‘group': 'locationType',
"filter': 'exists(countryArea) && exists(locationType)'

}

eval _res = c3. Qut breakLocati on. eval uat e(eval _spec)
df = c3python. Eval uat eResul t ToPandas(resul t=eval _res, eval _spec=eval _spec)

In [8]: df

Out[8]:
avg(countryArea) locationType

0 627982 368485 country
1 2085.800000 state

https://github.com/c3aidti/c3python
https://github.com/c3aidti/c3python

Here's another example of running the 'eval uat e' method in Python, this time using the 'or der ' parameter as well:

NOTE: The 'count(ethnicity)' expression within the 'order’ field is also within the 'projection’ field. This is required.

spec = c3. Eval uat eSpec(
projection="ethnicity, count(ethnicity)",
order ="' descendi ng(count (ethnicity))"',
group="ethnicity"

)

c3pyt hon. Eval uat eResul t ToPandas(resul t =c3. SurveyDat a. eval uat e(spec), eval _spec=spec)

Out[53]:
ethnicity count{ethnicity)

0 white 17288.0
1 black 7320.0
2 hispanic-latino 4.309.0
3 other-mixed 2605.0
4

asian 1651.0

To learn more about the 'eval uat e' method, please see the C3 Al resources here:

® Developer Documentation
© https://developer.c3.ai/docs/7.12.25/topic/tutorial-the-evaluate-method
© https://developer.c3.ai/docs/7.12.25/topic/console-evaluate-method

® (C3.ai Academy Videos:
© The Evaluate Method

Developing Metrics on Timeseries data

The C3 Al Suite also offers several features to handle time series data. To interact with time series, C3 Al developers typically use simple and compound
metrics. These metrics are used in several places in the C3 Al Suite such as:

® Alerts and Application Logic

® Machine Learning Features
® User Interface (to Visualize Data)

Timeseries Video Tutorial

To supplement the documentation below, we also have recorded a video lecture about Time Series data on the C3 Al Platform.

Your browser does not support the HTML5 video element

Simple Metrics

Simple metrics allow developers to produce time-series from raw data and are often used to construct more advanced metrics (i.e., Compound Metrics), in
practice. Simple metrics are linked to a specific C3 Type and reference the timeseries data stored within that Type. To declare a simple metric, users
should specify the following fields:

. id: The simple metric's unique id, which should follow the convention "name_srcType" (e.g., Apple_DrivingMobility_OutbreakLocation).
name: The simple metric's name (e.g., Apple_DrivingMobility).

. description: The simple metric's description (optional field).

. srcType: The C3 Type the simple metric is analyzed on (e.g., Qut br eakLocat i on).

https://developer.c3.ai/docs/7.12.25/topic/tutorial-the-evaluate-method
https://developer.c3.ai/docs/7.12.25/topic/console-evaluate-method
http://C3.ai
https://learnc3.litmos.com/course/3802340/module/7466371/Scorm?LPId=118058

5. path: The path from the sr cType to the C3 Type that stores the raw data referenced by the simple metric (e.g., poi nt Measur enent s)
Note: If the sr cType itself stores the raw data referenced by the simple metric, path field is optional.

6. expression: The expression (or ExpressionEngineFunction) applied to the raw data, referenced by the simple metric (e.g., avg(avg(normalized.
data.quantity)).
Note: The "normalized" key term instructs the simple metric to use normalized (instead of raw) data on the C3 Al Suite. To learn more about
Normalization, see this C3 Al Developer Documentation: https://developer.c3.ai/docs/7.12.25/topic/normalization.

Here is an example of a Simple Metric:

met = c3. SinpleMetric(
i d=' JHU ConfirmedCases2_Qut breakLocation',
nanme=" JHU ConfirnmedCases?2',
srcType=' Qut br eakLocati on',
pat h="aggr egat eMeasur enent s. (neasur enent Type == 'confirnmed' && origin ==
"' Johns Hopkins University')",
expression="interpol ate(avg(avg(normal i zed. data. val ue)), "PREVIOQUS', "M SSING')"'

)

To learn more about Simple Metrics, please see the C3 Al resources here:

® Developer Documentation
O https://developer.c3.ai/docs/7.12.25/topic/tutorial-simple-metrics
O https://developer.c3.ai/docs/7.12.25/topic/metrics-simple-metrics
® C3.ai Academy Videos:
O Metrics
© Simple Metrics

Another type of SimpleMetric is at sDecl (Timeseries Declaration) metric. t sDecl metrics are often used to turn non-time series raw data (e.g., event
data, status data, or data with irregular intervals) into time series. t sDecl metrics have the same fields as standard Si npl eMet ri ¢, except for the 't sDecl
' field, which replaces the 'expr essi on' field. t sDecl metrics may allow users the added flexibility to define new metrics that the expression field may not
support. Using a t sDecl metric, the above metric can be re-written as:

nmet = c3.SinpleMetric(
i d=" JHU_Confi r medCases3_Qut br eakLocati on',
nanme=' JHU_ConfirnmedCases3',
srcType=' Qut br eakLocati on',

pat h="aggr egat eMeasur enent s. (measur enent Type == 'confirned' && origin == "

"' Johns Hopkins University')",

tsDecl ={
‘data': 'data',
"treatnment': 'AVG,
‘start': 'start',
‘value': 'val ue'

}

To learn more about t sDecl metrics, please see the C3 Al resources here:

® Developer Documentation
© https://developer.c3.ai/docs/7.12.25/topic/metrics-tsdecl-metrics
© https://developer.c3.ai/docs/7.12.25/topic/tutorial-tsdecl-metrics
® (C3.ai Academy Videos:
© Time Series Declaration Metrics

Compound Metrics

Compound metrics allow C3 Al developers to manipulate or combine existing metrics into more complex time series. Compound metrics are built on top of
one or many existing Simple or Compound metrics. Please note, to evaluate a Compound metric on a C3 Type, all Simple metrics used in that Compound
metric must be defined on that Type as well. If not, an error is returned.

To declare a compound metric, users should specify the following fields:

id: The compound metric's unique id, typically the same as 'name’ (e.g., BLS_UnemploymentRate).

name: The compound metric's name (e.g., BLS_UnemploymentRate).

. description: The compound metric's description (optional field).

. expression: The expression (or ExpressionEngineFunction) applied to the metrics underlying the Compound metric (e.g.,
"BLS_LaborForcePopulation ? 100 * BLS_UnemployedPopulation / BLS_LaborForcePopulation: null").

rPonp

An example CompoundMetric is:

https://developer.c3.ai/docs/7.12.25/topic/normalization
https://developer.c3.ai/docs/7.12.25/topic/tutorial-simple-metrics
https://developer.c3.ai/docs/7.12.25/topic/metrics-simple-metrics
http://C3.ai
https://learnc3.litmos.com/course/3802360/module/7466566/Scorm?LPId=118058
https://developer.c3.ai/docs/7.12.25/topic/metrics-tsdecl-metrics
https://developer.c3.ai/docs/7.12.25/topic/tutorial-tsdecl-metrics
http://C3.ai
https://learnc3.litmos.com/course/3802360/module/7466566/Scorm?LPId=118058

net = c3. ConpoundMetri c(
id="JHU CaseFatalityRate',
name=' JHU CaseFatal ityRate',
expressi on=" JHU_Confi r medDeat hs/ JHU_Conf i r nedCases' ,

To learn more about Compound metrics, please see the C3 Al resources here:

® Developer Documentation
© https://developer.c3.ai/docs/7.12.25/topic/metrics-compound-metrics
© https://developer.c3.ai/docs/7.12.25/topic/tutorial-compound-metrics
® C3.ai Academy Videos:
© Compound Metrics

Finding, Evaluating, and Visualizing Metrics

Users can find, evaluate, and visualize metrics built in the C3 Al Suite via the JavaScript console or a hosted Jupyter notebook.

Finding Metrics

All metrics that users build and deploy in the C3 Al Suite are also stored in C3 Types. To view a list of all the simple and compound metrics applicable to a
C3 Type, run the 'l i st Met ri cs' method as shown below:

Javascript:

var nmetrics = QutbreakLocation.listMetrics()
c3Gid(netrics)

Python:

i mport pandas as pd
pd. Dat aFr ame(c3. Qut br eakLocation.listMetrics().toJson())

DTI Members using the Covid-19 Data Lake: While | i st Met ri cs does return a list, this is fairly bare bones if the 'descri pti on' field of a given metric
isn't filled in. The Covid-19 Data Lake APl documentation provides an extensive list of production-ready metrics along with detailed descriptions and usage
examples.

After finding a metric, the next step is to evaluate on data in a C3 Type.

Evaluating Metrics

Metrics are evaluated with either the 'eval Metri cs' or 'eval Metri csW t hMet adat a' methods. Behind the scenes, 'eval Metri cs'and 'eval Metri cs
W 't hMet adat a', fetch and transform raw data from a C3 Type into easy-to-analyze timeseries data. 'eval Met ri cs'is used to evaluate metrics
provisioned (deployed) to a tenant/tag. 'eval Met ri csW t hMet adat a' allows users to evaluate metrics either provisioned to a tenant/tag, or defined on-
the-fly in JavaScript console, or a hosted Jupyter notebook (typically for debugging).

To learn more about the differences between 'eval Metri cs' and 'eval Met ri csW t hMet adat a' see the documentation here: https://developer.c3.ai
/docs/7.12.25/type/MetricEvaluatable

To evaluate a metric, users must provide the following parameters (called an EvalMetricSpec) to the 'eval Metri cs' or'eval Metri csW t hMet adat a'
methods:

. ids ([string]): A list of ids in the C3 Type on which you want to evaluate the metrics (e.g., "Germany", "California_UnitedStates").
. expressions ([string]): A list of metrics to evaluate (e.g., "JHU_ConfirmedCases", "Apple_DrivingMobility").

. start (datetime): Start datetime of the time range to be evaluated (in ISO 8601 format) (e.g., "2020-01-01").

. end (datetime): End datetime of the time range to be evaluated (in ISO 8601 format) (e.g., "2020-08-01").

. interval (string): Desired interval for the resulting timeseries data (e.g., MINUTE, HOUR, DAY, MONTH, YEAR).

OO WOWNPE

Here's an example of evaluating a metric in Python:

spec = c3. Eval Metri csSpec(
ids=['"Illinois_UnitedStates', 'California_UnitedStates', 'UnitedStates'],
expressions=['JHU ConfirnmedCases', 'JHU ConfirmedDeaths'],
start='"2020-01-01',
end='2020- 08-01',
i nterval =' DAY',

)

results = c3. QutbreakLocati on. eval Metri cs(spec=spec)

https://developer.c3.ai/docs/7.12.25/topic/metrics-compound-metrics
https://developer.c3.ai/docs/7.12.25/topic/tutorial-compound-metrics
http://C3.ai
https://learnc3.litmos.com/course/3802360/module/7466566/Scorm?LPId=118058
https://c3.ai/covid-19-api-documentation/
https://developer.c3.ai/docs/7.12.25/type/MetricEvaluatable
https://developer.c3.ai/docs/7.12.25/type/MetricEvaluatable
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601

In Python, you can also specify the spec using a Dictionary without creating an EvalMetricsSpec Type:

results = c3. QutbreakLocation. eval Metri cs(spec={
ids': ["Illinois_UnitedStates', 'California_UnitedStates', 'UnitedStates' 1],
‘expressions': ['JHU ConfirnmedCases', 'JHU ConfirnmedDeaths'],
‘start': '2020-01-01',
‘end': '2020-08-01',
‘interval': 'DAY',
b

The C3 Al Suite returns the evaluated metric results (a timeseries) into the 'Eval Met ri csResul t ' type. With various helper functions, C3 Al developers
may then convert this timeseries into a Pandas DataFrame (via "Dat aset " type) for further data analysis or model development in a Jupyter notebook, as

shown below:

ds
df

c3. Dat aset. fronEval Metri csResul t (resul t=results)
c3. Dat aset . t oPandas(dat aset =ds)

Additionally, users can visualize evaluated metric results directly in the web-browser (i.e., JavaScript console) with the 'c3Vi z' function.

Here's an example of evaluating and visualizing in JavaScript console:

var spec = Eval MetricsSpec. nake({
ids': ['Illinois_UnitedStates', 'California_UnitedStates', 'UnitedStates'],
"expressions': ['JHU ConfirnedCases', 'JHU ConfirnmedDeaths'],
‘start': '2020-01-01',
"end': '2020-08-01",
"interval': ' DAY
b

var results = CQutbreakLocation. eval Metri cs(spec)
c3Viz(results)

Similarly, we don't have to explicitly create an Eval Met ri csSpec type:

var results = QutbreakLocation. eval Metrics({
ids': ['Illinois_UnitedStates', 'California_UnitedStates', 'UnitedStates'],
"expressions': ['JHU ConfirnedCases', 'JHU ConfirnmedDeaths'],
‘start': '2020-01-01',
"end': '2020-08-01",
"interval': ' DAY
b

c3Viz(results)

To learn more about evaluating and visualizing metrics, please see the C3 Al Developer Documentation here:

® https://developer.c3.ai/docs/7.12.25/topic/metrics-evaluating-metrics
® https://developer.c3.ai/docs/7.12.25/topic/metrics-visualizing-metrics
® https://developer.c3.ai/docs/7.12.25/topic/ds-jupyter-notebooks

Note: Metrics can only be evaluated on C3 Types that mix in the 'Met ri cEval uat abl e' Type.

Additional Resources

Official C3 Al Developer Documentation:

Timeseries Normalization
Timeseries Treatments
Timeseries Metrics
Simple Metrics
Compound Metrics

https://developer.c3.ai/docs/7.12.25/topic/metrics-evaluating-metrics
https://developer.c3.ai/docs/7.12.25/topic/metrics-visualizing-metrics
https://developer.c3.ai/docs/7.12.25/topic/ds-jupyter-notebooks
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ts-normalization-engine
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ts-treatments-home
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/metrics-home
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/metrics-simple-metrics
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/metrics-compound-metrics

Review and Next Steps

For most data analysis, C3 Al developers run the 'f et ch' and 'eval Met ri cs' methods. This C3.ai DTI Quickstart guide provides an introduction to these
methods in which the C3 Al Suite is used as a read-only database accessed via APIs. In the following guides, you will learn how to run 'wr i t €' operations

on the C3 Al Suite such as:

® Defining new Types
® Loading new data

® Clean-up databases in your tag
® Train machine learning models

Welcome to the start of your experience with the C3 Al Suite.

	DTI C3 AI Suite Quickstart Guide

