
DTI C3 AI Suite Quickstart Guide

Terminology
C3 Cluster Overview
Provision a C3 AI Package
Connecting to the C3 AI Suite

Accessing the Static Console
Using the Static Console
Tutorial Video
Console Commands
Official C3 AI Training Materials on Static Console
Using Python with the C3 AI Suite

Fetching Instances of C3 Types
Examples of Fetch Calls
Tutorial Video
The fetchCount Method

Converting Fetch results to usable forms in Jupyter Notebook
Python

ExpressionEngineFunctions
Computations on C3 Types using Evaluate
Developing Metrics on Timeseries data

Timeseries Video Tutorial
Simple Metrics
Compound Metrics
Finding, Evaluating, and Visualizing Metrics

Finding Metrics
Evaluating Metrics

Additional Resources
Review and Next Steps

The C3 AI Suite provides researchers many tools to analyze data and build and deploy machine learning models. This guide explains how to connect to 
the C3 AI Suite, access data using C3 AI methods, and convert C3 AI method outputs to an easy-to-analyze form. Additionally, the guide also provides 
more detailed instructions to DTI members using the Covid-19 Data Lake. Examples in this guide rely on the ' ' package available in baseCovidDataLake
this git repository.

Please note, this guide covers how to query data from the C3 AI Suite. For more advanced topics such as loading data, building metrics, or configuring 
and training machine learning models, please refer to the following wikis:

Data Integration (Not yet available)
Metrics (Not yet available)
Machine Learning (Not yet available)

Terminology
To best understand the C3 AI Suite and this guide, let's introduce key terminology used by C3 AI Suite developers:

Type: Nearly all aspects of the C3 AI Suite (e.g., data, machine learning models, cloud-provider microservices) are stored and accessed through 
Types. C3 AI Types are logical objects akin to a Java class, and contain 'fields' and 'methods'. Some Types are persisted to internal databases 
(like Postgres or Cassandra), while others are not. 
Field: A field of a Type. Fields contain attributes or data associated with the Type.
Method: A method declared on a Type. Methods define business logic associated with the Type. 
Vanity : The URL at which a specific tenant/tag of a C3 Cluster can be accessed. Url
Cluster: A deployment of the C3 AI Suite. A C3 Cluster is a collection of hardware or virtualized cloud instances (e.g., servers, databases, load 
balancers) used to run the C3 AI Suite and C3 AI Applications. The C3 AI Suite can run on any public or private cloud infrastructure or on a local 
machine (in a docker container).
Tenant: A logical partition of a C3 Cluster. All tenants in a cluster generally share the same compute and storage resources. Data within tenants, 
while stored in a single database, are logically separated. C3 AI Suite users on one tenant can't see data stored on another tenant. In other 
words, users are only able to view data for tenants to which they are explicitly granted access.
Tag: A logical partition of a tenant. A single tag hosts one C3 AI application (deployed package). 
Package: All the code a developer writes for an application. The C3 AI Suite runs a package on a tag. 
Provisioning: Deploying a package onto a tenant/tag in a C3 Cluster. 
Static Console: A browser-based tool that C3 AI developers use to interact with the C3 AI Suite. Static console is available on all modern 
browsers, including Google Chrome, Mozilla Firefox, and Apple Safari. Developers use the console to query data, evaluate expressions, view 
documentation, monitor environments, develop and test code, and manage environment configurations. You can access the static console at the 
url ' ' (replacing  with your Vanity Url).https://<vanity_url>/static/console <vanity_url>
Metric: Expressions that transform raw data into a time-series. 

C3 Cluster Overview

https://github.com/c3aidti/dtiTraining


The C3 AI Suite is a Platform as a Service (PaaS), which enables organizations to build, deploy, and operate enterprise-scale Big Data, AI, and IoT 
applications. The C3 AI Suite can be deployed on any private or public cloud infrastructure such as AWS, Azure, and Google Cloud Platform. When 
developing and operating applications, a C3 cluster is responsible for managing and supporting all the features of the C3 AI Suite. A C3 Cluster has at 
least one Master node and many Worker nodes. Master nodes prioritize and distribute jobs to Worker nodes and handle user requests. Worker nodes 
carry out jobs, allocated by the Master node. Other components of a C3 Cluster include databases (e.g., Postgres, Cassandra, Azure Blob), logging 
services (i.e., Splunk), and Jupyter. Atop these hardware or virtualized cloud resources is a logical software structure, with the highest level being a 
Cluster. A C3 Cluster is broken out into numerous tenants. Tenants are logically separated from each other (i.e., a particular tenant's data and packages 
are not accessible or visible to any other tenants), and contain many tags. Tags host C3 AI Packages (i.e., the code that C3 AI developers write and 
provision to the C3 AI Suite). A typical multi-tag, multi-tenant C3 Cluster is shown in a logical diagram below:

To learn more about the architecture of a C3 cluster, please see the training materials here:

Developer Documentation
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/arch-home
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/arch-clusters-tenants-and-tags

:C3.ai Academy Videos
Packages
Clusters, Tenants, and Tags

Provision a C3 AI Package
To provision a package to your tag, follow the instructions available at the .DTI Guide: Provisioning

To run the examples in this guide you will need to provision the ' ' by following the directions in the 'COVID-19 Data Lake baseCovidDataLake
Provisioning' section.

To learn more about provisioning, please see the C3 AI Develop Documentation here:

Developer Documentation
https://developer.c3.ai/docs/7.12.17/topic/arch-provisioning

:C3.ai Academy Videos
Provisioning

Connecting to the C3 AI Suite 

https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/arch-home
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/arch-clusters-tenants-and-tags
https://learnc3.litmos.com/course/3802332/module/7466213/Scorm?LPId=118058&Review=False&Reattempt=True
https://wiki.ncsa.illinois.edu/display/C3aiDTI/DTI+Guide%3A+Provisioning
https://learnc3.litmos.com/course/3802332/module/7466213/Scorm?LPId=118058&Review=False&Reattempt=True
https://learnc3.litmos.com/course/3802332/module/7466213/Scorm?LPId=118058&Review=False&Reattempt=True


The static console is the main tool that developers use to interact with the C3 AI Suite. However, we anticipate that most DTI members will use Python (via 
Jupyter notebook) for data analysis. That being said, the static console is an essential part of working with the C3 AI Suite and you will use it frequently. 
For example, the static console is the best place to find documentation tailored directly to your package. It's also a great place to quickly test queries as no 
specialized environments need to be set up to use it. Static console is ready-to-go in all modern browsers, including Google Chrome, Mozilla Firefox, and 
Apple Safari.

Accessing the Static Console

Once you have provisioned a package to your tag, navigate to the static console page at this url: ' ' https://<vanity_url>/static/console
(replacing  with your Vanity Url provided in your C3.ai DTI Training Cluster Onboarding Email). The static console page looks like this:<vanity_url>

The 'Tools' drop-down menu in the upper left-hand corner contains a list of available developer tools. The most relevant tool is the Provisioner, though 
there are also utilities for loading JavaScript files, debugging JS code, and inspecting Errors.

The 'Help' drop-down menu in the upper left-hand corner allows users to access console documentation and a C3 Cluster hosted documentation portal.



Most tools are also accessible through a series of icons in the upper right-hand corner:

Using the Static Console

Developers interact with the static console through the JavaScript console tab in the browser. When the static console page loads (or when you run the c3I
 command), JavaScript methods associated with all of your Package's defined Types are populated. You can write and run JavaScript code mportAll()

directly in the console tab to interact with your package.

You can also open Javascript console with the 'Ctrl+Shift+I' keyboard shortcut (in most browsers). Javascript console is also available through the 
browser's developer tools. If the 'Ctrl+Shift+I' keyboard shortcut doesn't work for you, review your browser's documentation on developer tools. Here's how 
the static console looks in Firefox, with the JavaScript console open:



Finally, let's write some JavaScript commands to see the console in action!

Tutorial Video

The DTI Team have recorded a short video introducing and describing the static console functionality:



Your browser does not support the HTML5 video element

Console Commands

Here are common JavaScript console commands used on the static console page.

c3ImportAll: A console command which loads all the C3 Types from your package into the static console. Always be sure refresh the static 
console page or run  after provisioning a new package.c3ImportAll()
c3Grid: A console command to display a table of data stored within a C3 Type. (e.g., data returned from a fetch operation, or an evaluate 
operation among many others).
c3Viz: A console command to produce quick visualizations or plots for some C3 Types. (e.g., time-series data like )EvalMetricsResult
c3ShowType: A console command to access documentation for a given C3 Type. (e.g., )c3ShowType(OutbreakLocation)

Official C3 AI Training Materials on Static Console

Developer Documentation
https://developer.c3.ai/docs/7.12.25/topic/console-home
https://developer.c3.ai/docs/7.12.25/topic/console-documentation-via-console

C3.ai Academy Videos:
Console Overview
Console Orientation

Using Python with the C3 AI Suite

We anticipate most DTI researchers will want to use Python for data analysis. There are two options to connect to a C3 Cluster via Python. Please follow 
the links below for detailed information about each.

Use C3 integrated Jupyter Notebook
Connecting to a C3 Cluster from a Remote Python Session

To learn more about the general structure of a C3 cluster, please see the resources here:

Developer Documentation
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ds-home
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ds-python-apis
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ds-home
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ds-jupyter-notebooks
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/actionruntime

:C3.ai Academy Videos
Python APIs
Python Runtimes

Fetching Instances of C3 Types
All data in the C3 AI Suite are stored in C3 Types. Users can access data from a Type with the ' ' method. Behind the scenes, the ' ' method fetch fetch
submits a query directly to the database underlying a Type, and retrieves and presents the query results.

The C3 AI Suite returns the ' ' query's response, which includes:fetch

data from the Type itself;
Metadata for the ' ' query (e.g., the number of objects, whether additional data exists in the database) into the  type for data fetch FetchResult
analysis (see example below).

To learn more about the ' ' method, please see the C3 AI resources here:fetch

Developer Documentation
Fetching and Filtering: https://developer.c3.ai/docs/7.12.25/topic/tutorial-fetching-and-filtering
Fetch and Filter Basics: https://developer.c3.ai/docs/7.12.25/topic/console-data-exploration-fetch-and-filters
Fetch and Filter Advanced: https://developer.c3.ai/docs/7.12.25/topic/console-fetch-and-filters-advanced

:C3.ai Academy Videos
Fetch & Filters

Users can also provide a FetchSpec (or parameters) to the ' ' method to describe particular data to retrieve (e.g., only retrieve gene sequences fetch
collected in Germany). The FetchSpec can be ' ' (e.g., ), or contain several parameters to return a subset of the data.empty OutbreakLocation.fetch()

Some example FetchSpec parameters include:

filter: Filter expression to return a subset of the data (e.g., age <= 20). Filter expressions must evaluate to a Boolean type (i.e., true or false)
limit: The maximum number of rows that should be returned. Be default, if no limit is specified, the C3 AI Suite returns 2,000 rows from the C3 
Type. Specifying a limit is often helpful to debug a fetch ' ' without returning too many records.method

https://developer.c3.ai/docs/7.12.25/topic/console-home
https://developer.c3.ai/docs/7.12.25/topic/console-documentation-via-console
http://C3.ai
https://learnc3.litmos.com/course/3802340/module/7466371/Scorm?LPId=118058
https://wiki.ncsa.illinois.edu/display/C3aiDTI/C3+AI+Integrated+Jupyter+Notebook
https://wiki.ncsa.illinois.edu/display/C3aiDTI/Connecting+to+a+C3+Cluster+from+a+Remote+Python+Session
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ds-home
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ds-python-apis
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ds-home
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ds-jupyter-notebooks
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/actionruntime
http://C3.ai
https://learnc3.litmos.com/course/3802623/module/7566724/Scorm?LPId=118105
https://developer.c3.ai/docs/7.12.25/topic/tutorial-fetching-and-filtering
https://developer.c3.ai/docs/7.12.25/topic/tutorial-fetching-and-
https://developer.c3.ai/docs/7.12.25/topic/console-data-
https://developer.c3.ai/docs/7.12.25/topic/console-fetch-and-
https://learnc3.litmos.com/course/3802340/module/7466371/Scorm?LPId=118058


include: Specifies the particular fields from a C3 Type to return to the FetchResult. By default, if no  spec is defined, all fields from the include
Type will be returned.
order: Specifies the order to return the query's results (either "ascending" or "descending").

Note: Please see the official FetchSpec documentation for a full list of parameters: https://developer.c3.ai/docs/7.12.17/type/FetchSpec

Examples of Fetch Calls

The  Type contains information from various locations for which the Covid-19 Data Lake has virus-related information. We can fetch OutbreakLocation O
 records for which the ' ' field exists (i.e., is not null). We can also retrieve these records in descending utbreakLocation latestTotalPopulation

order by their ' ':countryArea

res = OutbreakLocation.fetch({
        'limit': -1,
        'filter': 'exists(latestTotalPopulation)',
        'order': 'descending(latestTotalPopulation)',
        'include': 'id, name, latestTotalPopulation, populationOfAllChildren, countryArea, countryCode'
})

And we can show these results in the C3 AI static console using the  command:c3Grid

You can run this same fetch in Python:

raw_data = c3.OutbreakLocation.fetch({
        'limit': -1,
        'filter': 'exists(latestTotalPopulation)',
        'order': 'descending(latestTotalPopulation)',
        'include': 'id, name, latestTotalPopulation, populationOfAllChildren, countryArea, countryCode'
})

Additional details on "Fetching in Python" are available in this C3 AI Developer documentation: https://developer.c3.ai/docs/7.12.25/topic/ds-jupyter-
notebooks

Additional examples of fetch calls can be found here:

https://github.com/c3aidti/casesExample
https://github.com/c3aidti/genomicsExample

https://developer.c3.ai/docs/7.12.17/type/FetchSpec
https://developer.c3.ai/docs/7.12.25/topic/ds-jupyter-notebooks
https://developer.c3.ai/docs/7.12.25/topic/ds-jupyter-notebooks
https://github.com/c3aidti/casesExample
https://github.com/c3aidti/genomicsExample


https://github.com/c3aidti/HouseCoverageExample
https://github.com/c3aidti/VaccineListing
https://github.com/c3aidti/EpidemiologyExample

Tutorial Video

This tutorial video goes over fetching and filtering:

Your browser does not support the HTML5 video element

The fetchCount Method

Another useful command is ' '. Like ' ', users can also provide a FetchSpec (or parameters) to ' '. The ' ' fetchCount fetch fetchCount fetchCount
method then returns the number of records that match the FetchSpec. This is useful when trying to determine whether a given search is refined enough.

OutbreakLocation.fetchCount({'filter': 'exists(latestTotalPopulation)'})

You can run the same ' ' in python: fetchCount

c3.OutbreakLocation.fetchCount(spec={'filter': 'exists(latestTotalPopulation)'})

To learn more about the ' ' method, please see the   method definition in the Persistable Type documentation: fetchCount fetchCount https://developer.
c3.ai/docs/7.12.25/type/Persistable

Converting Fetch results to usable forms in Jupyter Notebook
When using a Jupyter Notebook, C3 AI developers typically modify FetchResults for data analysis. This section shows a couple of ways to convert 
FetchResults into easy-to-analyze forms.

Python

In python, first retrieve the ' ' field from the FetchResults object, and then call the  function. The   function returns an array of objs toJson() toJson()
dictionaries each with keys equal to the requested fields of the fetched C3 Type. Using the Pandas library, this array can be turned into an analysis-ready 
DataFrame, as the below example shows:

import pandas as pd
df = pd.DataFrame(raw_data.objs.toJson())
df.head()
df.drop('meta', axis=1, inplace=True)
df.drop('type', axis=1, inplace=True)
df.drop('version', axis=1, inplace=True)
df.drop('id', axis=1, inplace=True)
df.head()

https://github.com/c3aidti/HouseCoverageExample
https://github.com/c3aidti/VaccineListing
https://github.com/c3aidti/EpidemiologyExample
https://developer.c3.ai/docs/7.12.25/type/Persistable
https://developer.c3.ai/docs/7.12.25/type/Persistable


Users can then manipulate the resulting DataFrame, using common programming libraries and frameworks.

ExpressionEngineFunctions
The C3 AI Suite also provides a pre-built library of "ExpressionEngineFunctions". Expression Engine Functions take a variety of arguments and perform 
various data processing tasks. For example, the function ' ' takes two strings as arguments and checks whether the first argument contains the contains
second argument. The function ' ' takes as input a string and returns that same string with all lowercase letters. In addition to these string lowerCase
processing functions, the C3 AI Suite's ExpressionEngine includes many math functions (such as ' ', ' ', and ' ') which operate on various input log avg abs
data types (e.g. , , ).int double float

The ExpressionEngine Functions are used in several places, such as:

' ' filtersfetch
Simple and compound metric expressions
tsDecl metric values

To learn more about ExpressionEngineFunctions, please see the C3 AI resources here:

Developer Documentation
https://developer.c3.ai/docs/7.12.25/type/ExpressionEngineFunction

:C3.ai Academy Videos
ExpressionEngineFunctions

Computations on C3 Types using Evaluate
Using the ' ' method, developers can run aggregations or other computations on data fetched from a C3 Type. (e.g., compute the average area evaluate
across all countries with area data available, in the  Type).OutbreakLocation

The ' ' method takes several parameters:evaluate

projection: [Required] A comma-separated list of expressions (from the ExpressionEngineFunction library) to apply to data from a C3 Type (e.g., 
, , , ). You can simply think about a projection as the columns/fields, calculated or otherwise, which the " " method avg unique min max evaluate

should return.
group: A comma-separated list of columns/fields, to group the aggregated/transformed data by (e.g, compute the average area by the 'location

' field in ). Please note, in any ' ' command, all columns in the 'group' field  in the 'Type OutbreakLocation evaluate MUST ALSO BE projecti
' field, as the example below shows. on

having: A SQL style having clause.
order: A comma-separated list of columns/fields, to order aggregated/transformed data by. Users can access data in 'ascending' or 'descending' 
order. Please note, in any ' ' command, all columns in the 'order' field  in the ' ' field.evaluate MUST ALSO BE projection
filter: A filter expression that restricts the rows in a C3 Type on which the   method is run. evaluate

In static console, ' ' displays the ' ' method results nicely:c3Grid evaluate

(Note: the 'locationType' expression within the 'group' field is also within the 'projection' field. This is required.)

var eval_result = OutbreakLocation.evaluate({
    'projection': 'avg(countryArea), locationType',

https://developer.c3.ai/docs/7.12.25/type/ExpressionEngineFunction
http://C3.ai
https://learnc3.litmos.com/course/3802360/module/7466566/Scorm?LPId=118058


    'group': 'locationType',
    'filter': 'exists(countryArea) && exists(locationType)'
})
c3Grid(eval_result)

Users can also run the ' ' method in python. In this case, users often modify the ' ' method's results for data analysis. To view and evaluate evaluate
analyze the ' ' method's results in Python, please use the helper function available in C3 DTI's c3python module here: evaluate https://github.com/c3aidti
/c3python

NOTE: The 'locationType' expression within the 'group' field is also within the 'projection' field. This is required.

eval_spec = {
    'projection': 'avg(countryArea), locationType',
    'group': 'locationType',
    'filter': 'exists(countryArea) && exists(locationType)'
}
eval_res = c3.OutbreakLocation.evaluate(eval_spec)
df = c3python.EvaluateResultToPandas(result=eval_res, eval_spec=eval_spec)

https://github.com/c3aidti/c3python
https://github.com/c3aidti/c3python


1.  
2.  
3.  
4.  

Here's another example of running the ' ' method in Python, this time using the ' ' parameter as well:evaluate order

NOTE: The 'count(ethnicity)' expression within the 'order' field is also within the 'projection' field. This is required.

spec = c3.EvaluateSpec(
    projection="ethnicity, count(ethnicity)",
    order='descending(count(ethnicity))',
    group="ethnicity"
)
c3python.EvaluateResultToPandas(result=c3.SurveyData.evaluate(spec), eval_spec=spec)

To learn more about the ' ' method, please see the C3 AI resources here:evaluate

Developer Documentation
https://developer.c3.ai/docs/7.12.25/topic/tutorial-the-evaluate-method
https://developer.c3.ai/docs/7.12.25/topic/console-evaluate-method

:C3.ai Academy Videos
The Evaluate Method

Developing Metrics on Timeseries data
The C3 AI Suite also offers several features to handle time series data. To interact with time series, C3 AI developers typically use simple and compound 
metrics. These metrics are used in several places in the C3 AI Suite such as:

Alerts and Application Logic
Machine Learning Features
User Interface (to Visualize Data)

Timeseries Video Tutorial

To supplement the documentation below, we also have recorded a video lecture about Time Series data on the C3 AI Platform.

Your browser does not support the HTML5 video element

Simple Metrics

Simple metrics allow developers to produce time-series from raw data and are often used to construct more advanced metrics (i.e., Compound Metrics), in 
practice. Simple metrics are linked to a specific C3 Type and reference the timeseries data stored within that Type. To declare a simple metric, users 
should specify the following fields:

id: The simple metric's unique id, which should follow the convention "name_srcType" (e.g., Apple_DrivingMobility_OutbreakLocation).
name: The simple metric's name (e.g., Apple_DrivingMobility).
description: The simple metric's description (optional field).
srcType: The C3 Type the simple metric is analyzed on (e.g., ).OutbreakLocation

https://developer.c3.ai/docs/7.12.25/topic/tutorial-the-evaluate-method
https://developer.c3.ai/docs/7.12.25/topic/console-evaluate-method
http://C3.ai
https://learnc3.litmos.com/course/3802340/module/7466371/Scorm?LPId=118058


5.  

6.  

1.  
2.  
3.  
4.  

path: The path from the  to the C3 Type that stores the raw data referenced by the simple metric (e.g., ) srcType pointMeasurements
: If the  itself stores the raw data referenced by the simple metric, path field is optional.Note srcType

expression: The expression (or ExpressionEngineFunction) applied to the raw data, referenced by the simple metric (e.g., avg(avg(normalized.
data.quantity)). 

: The "normalized" key term instructs the simple metric to use normalized (instead of raw) data on the C3 AI Suite. To learn more about Note
Normalization, see this C3 AI Developer Documentation: .https://developer.c3.ai/docs/7.12.25/topic/normalization

Here is an example of a Simple Metric:

met = c3.SimpleMetric(
  id='JHU_ConfirmedCases2_OutbreakLocation',
 name='JHU_ConfirmedCases2',
 srcType='OutbreakLocation',
 path="aggregateMeasurements.(measurementType == 'confirmed' && origin == "
       "'Johns Hopkins University')",
 expression='interpolate(avg(avg(normalized.data.value)), "PREVIOUS", "MISSING")'
)

To learn more about Simple Metrics, please see the C3 AI resources here:

Developer Documentation
https://developer.c3.ai/docs/7.12.25/topic/tutorial-simple-metrics
https://developer.c3.ai/docs/7.12.25/topic/metrics-simple-metrics

:C3.ai Academy Videos
Metrics
Simple Metrics

Another type of SimpleMetric is a  (Timeseries Declaration) metric.   metrics are often used to turn non-time series raw data (e.g., event tsDecl tsDecl
data, status data, or data with irregular intervals) into time series.   metrics have the same fields as standard , except for the 'tsDecl SimpleMetric tsDecl
' field, which replaces the ' ' field.   metrics may allow users the added flexibility to define new metrics that the expression field may not expression tsDecl
support. Using a   metric, the above metric can be re-written as:tsDecl

met = c3.SimpleMetric(
        id='JHU_ConfirmedCases3_OutbreakLocation',
        name='JHU_ConfirmedCases3',
        srcType='OutbreakLocation',
        path="aggregateMeasurements.(measurementType == 'confirmed' && origin == "
       "'Johns Hopkins University')",
        tsDecl={
                'data': 'data',
                'treatment': 'AVG',
                'start': 'start',
                'value': 'value'
        }
)

To learn more about   metrics, please see the C3 AI resources here:tsDecl

Developer Documentation
https://developer.c3.ai/docs/7.12.25/topic/metrics-tsdecl-metrics
https://developer.c3.ai/docs/7.12.25/topic/tutorial-tsdecl-metrics

:C3.ai Academy Videos
Time Series Declaration Metrics

Compound Metrics

Compound metrics allow C3 AI developers to manipulate or combine existing metrics into more complex time series. Compound metrics are built on top of 
one or many existing Simple or Compound metrics. Please note, to evaluate a Compound metric on a C3 Type, all Simple metrics used in that Compound 
metric must be defined on that Type as well. If not, an error is returned.

To declare a compound metric, users should specify the following fields:

id: The compound metric's unique id, typically the same as 'name' (e.g., BLS_UnemploymentRate).
name: The compound metric's name (e.g., BLS_UnemploymentRate).
description: The compound metric's description (optional field).
expression: The expression (or ExpressionEngineFunction) applied to the metrics underlying the Compound metric (e.g., 
"BLS_LaborForcePopulation ? 100 * BLS_UnemployedPopulation / BLS_LaborForcePopulation: null").

An example CompoundMetric is:

https://developer.c3.ai/docs/7.12.25/topic/normalization
https://developer.c3.ai/docs/7.12.25/topic/tutorial-simple-metrics
https://developer.c3.ai/docs/7.12.25/topic/metrics-simple-metrics
http://C3.ai
https://learnc3.litmos.com/course/3802360/module/7466566/Scorm?LPId=118058
https://developer.c3.ai/docs/7.12.25/topic/metrics-tsdecl-metrics
https://developer.c3.ai/docs/7.12.25/topic/tutorial-tsdecl-metrics
http://C3.ai
https://learnc3.litmos.com/course/3802360/module/7466566/Scorm?LPId=118058


1.  
2.  
3.  
4.  
5.  

met = c3.CompoundMetric(
        id='JHU_CaseFatalityRate',
        name='JHU_CaseFatalityRate',
        expression='JHU_ConfirmedDeaths/JHU_ConfirmedCases',
)

To learn more about Compound metrics, please see the C3 AI resources here:

Developer Documentation
https://developer.c3.ai/docs/7.12.25/topic/metrics-compound-metrics
https://developer.c3.ai/docs/7.12.25/topic/tutorial-compound-metrics

:C3.ai Academy Videos
Compound Metrics

Finding, Evaluating, and Visualizing Metrics

Users can find, evaluate, and visualize metrics built in the C3 AI Suite via the JavaScript console or a hosted Jupyter notebook.

Finding Metrics

All metrics that users build and deploy in the C3 AI Suite are also stored in C3 Types. To view a list of all the simple and compound metrics applicable to a 
C3 Type, run the ' ' method as shown below:listMetrics

Javascript:

var metrics = OutbreakLocation.listMetrics()
c3Grid(metrics)

Python:

import pandas as pd
pd.DataFrame(c3.OutbreakLocation.listMetrics().toJson())

DTI Members using the Covid-19 Data Lake: While   does return a list, this is fairly bare bones if the ' ' field of a given metric listMetrics description
isn't filled in. The  provides an extensive list of production-ready metrics along with detailed descriptions and usage Covid-19 Data Lake API documentation
examples.

After finding a metric, the next step is to evaluate on data in a C3 Type.

Evaluating Metrics

Metrics are evaluated with either the ' ' or ' ' methods. Behind the scenes, ' ' and 'evalMetrics evalMetricsWithMetadata evalMetrics evalMetrics
', fetch and transform raw data from a C3 Type into easy-to-analyze timeseries data. ' ' is used to evaluate metrics WithMetadata evalMetrics

provisioned (deployed) to a tenant/tag. ' ' allows users to evaluate metrics either provisioned to a tenant/tag, or defined on-evalMetricsWithMetadata
the-fly in JavaScript console, or a hosted Jupyter notebook (typically for debugging).

To learn more about the differences between ' ' and ' ' see the documentation here: evalMetrics evalMetricsWithMetadata https://developer.c3.ai
/docs/7.12.25/type/MetricEvaluatable

To evaluate a metric, users must provide the following parameters (called an EvalMetricSpec) to the ' ' or ' ' evalMetrics evalMetricsWithMetadata
methods:

ids ([string]): A list of ids in the C3 Type on which you want to evaluate the metrics (e.g., "Germany", "California_UnitedStates").
expressions ([string]): A list of metrics to evaluate (e.g., "JHU_ConfirmedCases", "Apple_DrivingMobility").
start (datetime): Start datetime of the time range to be evaluated (in  format) (e.g., "2020-01-01").ISO 8601
end (datetime): End datetime of the time range to be evaluated (in  format) (e.g., "2020-08-01").ISO 8601
interval (string): Desired interval for the resulting timeseries data (e.g., MINUTE, HOUR, DAY, MONTH, YEAR).

Here's an example of evaluating a metric in Python:

spec = c3.EvalMetricsSpec(
  ids=[ 'Illinois_UnitedStates', 'California_UnitedStates', 'UnitedStates' ],
  expressions=[ 'JHU_ConfirmedCases', 'JHU_ConfirmedDeaths' ],
  start='2020-01-01',
  end='2020-08-01',
  interval='DAY',
)

results = c3.OutbreakLocation.evalMetrics(spec=spec)

https://developer.c3.ai/docs/7.12.25/topic/metrics-compound-metrics
https://developer.c3.ai/docs/7.12.25/topic/tutorial-compound-metrics
http://C3.ai
https://learnc3.litmos.com/course/3802360/module/7466566/Scorm?LPId=118058
https://c3.ai/covid-19-api-documentation/
https://developer.c3.ai/docs/7.12.25/type/MetricEvaluatable
https://developer.c3.ai/docs/7.12.25/type/MetricEvaluatable
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601


In Python, you can also specify the spec using a Dictionary without creating an EvalMetricsSpec Type:

results = c3.OutbreakLocation.evalMetrics(spec={
        'ids': [ 'Illinois_UnitedStates', 'California_UnitedStates', 'UnitedStates' ],
        'expressions': [ 'JHU_ConfirmedCases', 'JHU_ConfirmedDeaths' ],
        'start': '2020-01-01',
        'end': '2020-08-01',
        'interval': 'DAY',
})

The C3 AI Suite returns the evaluated metric results (a timeseries) into the ' ' type. With various helper functions, C3 AI developers EvalMetricsResult
may then convert this timeseries into a Pandas DataFrame (via " " type) for further data analysis or model development in a Jupyter notebook, as Dataset
shown below:

ds = c3.Dataset.fromEvalMetricsResult(result=results)
df = c3.Dataset.toPandas(dataset=ds)

Additionally, users can visualize evaluated metric results directly in the web-browser (i.e., JavaScript console) with the ' ' function.c3Viz

Here's an example of evaluating and visualizing in JavaScript console:

var spec = EvalMetricsSpec.make({
        'ids': ['Illinois_UnitedStates', 'California_UnitedStates', 'UnitedStates' ],
        'expressions': [ 'JHU_ConfirmedCases', 'JHU_ConfirmedDeaths' ],
        'start': '2020-01-01',
        'end': '2020-08-01',
        'interval': 'DAY'
})

var results = OutbreakLocation.evalMetrics(spec)
c3Viz(results)

Similarly, we don't have to explicitly create an  type:EvalMetricsSpec

var results = OutbreakLocation.evalMetrics({
    'ids': ['Illinois_UnitedStates', 'California_UnitedStates', 'UnitedStates' ],
    'expressions': [ 'JHU_ConfirmedCases', 'JHU_ConfirmedDeaths' ],
    'start': '2020-01-01',
    'end': '2020-08-01',
    'interval': 'DAY'
})
c3Viz(results)

To learn more about evaluating and visualizing metrics, please see the C3 AI Developer Documentation here:

https://developer.c3.ai/docs/7.12.25/topic/metrics-evaluating-metrics
https://developer.c3.ai/docs/7.12.25/topic/metrics-visualizing-metrics
https://developer.c3.ai/docs/7.12.25/topic/ds-jupyter-notebooks

Note: Metrics can only be evaluated on C3 Types that mix in the ' ' Type.MetricEvaluatable

Additional Resources

Official C3 AI Developer Documentation:

Timeseries Normalization
Timeseries Treatments
Timeseries Metrics
Simple Metrics
Compound Metrics

https://developer.c3.ai/docs/7.12.25/topic/metrics-evaluating-metrics
https://developer.c3.ai/docs/7.12.25/topic/metrics-visualizing-metrics
https://developer.c3.ai/docs/7.12.25/topic/ds-jupyter-notebooks
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ts-normalization-engine
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/ts-treatments-home
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/metrics-home
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/metrics-simple-metrics
https://developer.c3.ai/docs/7.12.25/guide/guide-c3aisuite-basic/metrics-compound-metrics


Review and Next Steps

For most data analysis, C3 AI developers run the ' ' and ' ' methods. This C3.ai DTI Quickstart guide provides an introduction to these fetch evalMetrics
methods in which the C3 AI Suite is used as a read-only database accessed via APIs. In the following guides, you will learn how to run ' ' operations write
on the C3 AI Suite such as:

Defining new Types
Loading new data
Clean-up databases in your tag
Train machine learning models

Welcome to the start of your experience with the C3 AI Suite.


	DTI C3 AI Suite Quickstart Guide

