
1.
a.
b.

2.
a.

3.

Deployment Environment
Eclipse code style code-style.xml

Deploying GWT Apps

A good article about deploying GWT apps ()http://developerlife.com/tutorials/?p=231

Deployment from Eclipse

The eclipse plugin has the compile feature options built in.

Complile
Right click on project > Debug As > Web Application OR
Hit the Red"G" Box icon top left, and compile options will appear

Create a war, by zipping up the war directory and rename it [project name].war
move libraries if need be, if there linked and not in the library folder

Copy the war file to the webapp folder for Tomcat deployment

Tomcat Setting for Connection Pool (JNDI) for SQL Server 2005 and Postgresql

Copy jtds-1.2.5.jar () to CATALINE_HOME/libhttp://jtds.sourceforge.net/
Copy postgresql-8.4-701.jdbc4.jar () to CATALINE_HOME/libhttp://jdbc.postgresql.org/

Edit conf/context.xml like below:

<?xml version='1.0' encoding='utf-8'?>
<Context>
 <!-- definition of DB connection resource -->
<Resource name="jdbc/mmsql"
 auth="Container"
 type="javax.sql.DataSource"
 driverClassName="net.sourceforge.jtds.jdbc.Driver"
 url="jdbc:jtds:sqlserver://[host_url]/[dbname]"
 username="[username]"
 password="[password]"
 maxActive="8"
 maxIdle="4"
/>

<Resource name="jdbc/pgsql"
 auth="Container"
 type="javax.sql.DataSource"
 driverClassName="org.postgresql.Driver"
 url="jdbc:postgresql://[host_url]/[dbname]"
 username="[username]"
 password="[password]"
 maxActive="8"
 maxIdle="4"
/>

 <WatchedResource>WEB-INF/web.xml</WatchedResource>
</Context>

Add the following code in <web-app> tag in webapps/[your_webapps]/WEB-INF/web.xml:

https://wiki.ncsa.illinois.edu/download/attachments/12222483/code-style.xml?version=1&modificationDate=1266418725000&api=v2
http://developerlife.com/tutorials/?p=231
http://jtds.sourceforge.net/
http://jdbc.postgresql.org/

 <resource-ref>
 <description>MM DB connection</description>
 <res-ref-name>jdbc/mmsql</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

 <resource-ref>
 <description>Spaital MM DB connection</description>
 <res-ref-name>jdbc/pgsql</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

Configure Tomcat CGI

In order to retrieve features from the geoserver using XMLHttpRequests, you will need to use the proxy.cgi file that comes with OpenLayers. You can
obtain this proxy and more information about it . In this setup, we assume that you are configuring Tomcat 6 or higher, the setup of Tomcat 5 is slightly here
different.

Step 1:

The first file to edit is inside called . You will need to change:CATALINA_HOME/conf context.xml

<Context>

to

<Context privileged="true">

Save the changes.

Step 2:

The next file to edit is also in called . You will need to find the lines that discuss the _ Common Gateway Includes (CGI) CATALINA_HOME/conf web.xml
processing servlet_, you can do this by searching for CGI. You will need to uncomment the section below and add the missing parts. Most of it is already
filled in by default and is just commented out.

<servlet>
 <servlet-name>cgi</servlet-name>
 <servlet-class>org.apache.catalina.servlets.CGIServlet</servlet-class>
 <init-param>
 <param-name>debug</param-name>
 <param-value>0</param-value>
 </init-param>
 <init-param>
 <param-name>executable</param-name>
 <param-value>/usr/bin/python</param-value>
 </init-param>
 <init-param>
 <param-name>cgiPathPrefix</param-name>
 <param-value>WEB-INF/cgi</param-value>
 </init-param>
 <init-param>
 <param-name>passShellEnvironment</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>5</load-on-startup>
 </servlet>

Be sure to add the complete path to your python executable. Also, note the . You will need to create a directory inside the folder cgiPRefixPath WEB_INF
called and place the proxy.cgi file inside it. Further down in this file you will need to uncomment the following line:cgi

http://trac.openlayers.org/wiki/FrequentlyAskedQuestions#WhydoIneedaProxyHost

<servlet-mapping>
 <servlet-name>cgi</servlet-name>
 <url-pattern>/cgi-bin/*</url-pattern>
</servlet-mapping>

Save the changes.

Step 3:

The final step involves setting the proxy host and creating the war file. If you name your war file this will unzip and create the directory marketmaker.war
marketmaker which includes a subdirectory called . Inside the directory there should be a directory called that contains the file WEB-INF WEB-INF cgi prox

. In this case, inside your entry point class where you set the proxy host, you will need to specify the proxy host as y.cgi /marketmaker/cgi-bin/proxy.cgi?
 so that the proxy host is set properly. If we had named the war file , the proxy host would be set as . You can url= client.war /client/cgi-bin/proxy.cgi?url=

test your proxy by going to the link if you named the war file and left the default port http://localhost:8080/marketmaker/cgi-bin/proxy.cgi marketmaker.war
for tomcat.

http://localhost:8080/marketmaker/cgi-bin/proxy.cgi

	Deployment Environment

