This wiki site will be offline Weds, July 6th, 2022, from 5:30-8:30 PM CDT in order to upgrade Confluence
Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Announcements

Colloquium on Digital Transformation Science

June 24, 3 pm CT

Closing the Loop on Machine Learning: Data Markets, Domain Expertise, and Human Behavior

Roy Dong, Research Assistant Professor of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

REGISTER FOR ZOOM WEBINAR

As machine learning and data analytics are increasingly deployed in practice, it becomes more and more pressing to consider the ecosystem created by such methods. In recent years, issues of data provenance, the veracity of available data, vulnerabilities to data manipulation, and human perceptions/behavior have had a growing effect on the overall performance of our intelligent systems. In the first part of this talk, I consider a game-theoretic model for data markets, and demonstrate that whenever multiple data purchasers compete for data sources without exclusivity contracts, there is a fundamental degeneracy in the equilibria, independent of each data purchaser's learning capabilities. In the second part of this talk, we discuss issues of causal inference, which are essential when our learning algorithms are used to make decisions. We analyze how passively observed data can be efficiently combined with actively collected trial data to most efficiently recover causal structures. In the last section of this talk, I will discuss some of our recent experiments with human participants in the context of intelligent building control, and show that commonly designed mechanisms assuming utility-maximizing behavior may fall short of theoretical performance in practice.

Roy Dong is a Research Assistant Professor in the Department of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign. He received a BS Honors in Computer Engineering and a BS Honors in Economics from Michigan State University in 2010 and a PhD in Electrical Engineering and Computer Sciences from the University of California, Berkeley in 2017, where he was funded in part by the NSF Graduate Research Fellowship. From 2017 to 2018, he was a postdoctoral researcher in the Berkeley Energy and Climate Institute (BECI) and a visiting lecturer in the Department of Industrial Engineering and Operations Research at UC Berkeley. His research uses tools from control theory, economics, statistics, and optimization to understand the closed-loop effects of machine learning, with applications in cyber-physical systems such as the smart grid, modern transportation networks, and autonomous vehicles.

Announcing our Third Call for Proposals:

AI to Transform Cybersecurity and Secure Critical Infrastructure

It is anticipated that up to USD $10 million in Research Awards will be awarded from this Call for Proposals. Proposals can request funding of USD $100,000 to $1,000,000 for an initial period of one (1) year.

C3DTI will also make available up to USD $2 million in Azure Cloud computing resources, supercomputing resources at UIUC’s NCSA and LBNL’s NERSC, and free, unlimited access to the C3 AI Suite hosted on the Microsoft Azure Cloud. 

**** We will be offering a virtual session with information on the CFP including an opportunity to ask questions early in January. Please keep an eye out on you email and this wiki page for more information. ****

Proposals are Due February 7, 2022

Awards will be made in March 2022 with start dates of around June 1, 2022

Information Session Slide Deck


Quick Links:

C3.ai DTI Webpage

Events

Information on Call for Proposals

Proposal Matchmaking (Archive from 2020 CFP)

C3.ai DTI Training Materials

C3 Administration (password protected)


Have Questions? Please contact one of us:



Recent space activity

Recently Updated
typespage, comment, blogpost
max5
hideHeadingtrue
themesocial

Space contributors

Contributors
modelist
scopedescendants
limit5
showLastTimetrue
orderupdate


Announcing our Third Call for Proposals:

AI to Transform Cybersecurity and Secure Critical Infrastructure

It is anticipated that up to USD $10 million in Research Awards will be awarded from this Call for Proposals. Proposals can request funding of USD $100,000 to $1,000,000 for an initial period of one (1) year.

C3DTI will also make available up to USD $2 million in Azure Cloud computing resources, supercomputing resources at UIUC’s NCSA and LBNL’s NERSC, and free, unlimited access to the C3 AI Suite hosted on the Microsoft Azure Cloud. 

**** We will be offering a virtual session with information on the CFP including an opportunity to ask questions early in January. Please keep an eye out on you email and this wiki page for more information. ****

Proposals are Due February 7, 2022

Awards will be made in March 2022 with start dates of around June 1, 2022


Quick Links:

C3.ai DTI Webpage

Events

Information on Call for Proposals

Proposal Matchmaking

C3.ai DTI Training Materials Overview (password protected)

C3 Administration (password protected)


Have Questions? Please contact one of us:



Recent space activity

Recently Updated
typespage, comment, blogpost
max5
hideHeadingtrue
themesocial

Space contributors

Contributors
modelist
scopedescendants
limit5
showLastTimetrue
orderupdate