Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Quick Links:

C3.ai DTI Webpage

Events

Information on Call for Proposals

Proposal Matchmaking (Archive from 2020 CFP)

C3.ai DTI Training Materials

C3 Administration (password protected)


Have Questions? Please contact one of us:



Recent space activity

Recently Updated
typespage, comment, blogpost
max5
hideHeadingtrue
themesocial

Space contributors

Contributors
modelist
scopedescendants
limit5
showLastTimetrue
orderupdate


Announcing our Third Call for Proposals:

AI to Transform Cybersecurity and Secure Critical Infrastructure

It is anticipated that up to USD $10 million in Research Awards will be awarded from this Call for Proposals. Proposals can request funding of USD $100,000 to $1,000,000 for an initial period of one (1) year.

C3DTI will also make available up to USD $2 million in Azure Cloud computing resources, supercomputing resources at UIUC’s NCSA and LBNL’s NERSC, and free, unlimited access to the C3 AI Suite hosted on the Microsoft Azure Cloud. 

**** We will be offering a virtual session with information on the CFP including an opportunity to ask questions early in January. Please keep an eye out on you email and this wiki page for more information. ****

Proposals are Due February 7, 2022

Awards will be made in March 2022 with start dates of around June 1, 2022

Announcements

  • Colloquium on Digital Transformation Science
  • November 5, 3 pm CT

    Reconstructing SARS-COV-2 Response Pathways

    Ziv Bar-Joseph, FORE Systems Professor of Computer Science, Carnegie Mellon University

    REGISTER FOR ZOOM WEBINAR

    SARS-CoV-2 is known to primarily impact cells via two viral entry factors, ACE2 and TMPRSS2. However, much less is currently known about virus activity within cells. We used computational methods based on probabilistic graphical models to integrate several recent SARS-CoV-2 interaction and expression datasets with general protein-protein and protein-DNA interaction datasets. The reconstructed models display the pathways viral proteins use to drive expression in human cells and the pathways the cell uses to respond to the infection. Intersecting key proteins on these pathways with expression data from underlying conditions shown to increase mortality from SARS-CoV-2, and with knockout and phosphorylation data, identifies a few potential targets for treating cells to reduce viral loads.

    Ziv Bar-Joseph is the FORE Systems Professor of Computational Biology and Machine Learning at Carnegie Mellon University. His work focuses on the development of machine learning methods for the analysis, modeling, and visualization of time series high throughput biological data. Dr. Bar-Joseph is the recipient of the Overton Prize, an NSF CAREER Award, and several conference Best Paper awards. He is currently leading the Computational Tools Center for the National Institutes of Health Human BioMolecular Atlas Program (HuBMAP). He has served on the advisory board of several national efforts including the National Institute for Allergy and Infectious Diseases Systems Biology Program. Software tools developed by his group are widely used for the analysis of genomics data.


    Quick Links:

    C3.ai DTI Webpage

    Events

    Information on Call for Proposals

    Proposal Matchmaking

    C3.ai DTI Training Materials (password protected)

    C3 Administration (password protected)


    Have Questions? Please contact one of us:



    Recent space activity

    Recently Updated
    typespage, comment, blogpost
    max5
    hideHeadingtrue
    themesocial

    Space contributors

    Contributors
    modelist
    scopedescendants
    limit5
    showLastTimetrue
    orderupdate