Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Announcements

Colloquium on Digital Transformation Science


  • June 1017, 3 pm CT

    Security of Cyber-Physical Systems

    Jeff Shamma, Professor, Department of Industrial and Enterprise Systems

    Data-Driven Coordination of Distributed Energy Resources

    Alejandro Dominguez-Garcia, Professor of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

    REGISTER FOR ZOOM WEBINAR

    The coming decades may see large-scale deployment of networked cyber-physical systems to address global needs in areas such as energy, water, health care, and transportation. However, as recent events have shown, such systems are vulnerable to cyber attacks. We begin by revisiting classical linear systems theory, developed in more innocent times, from a security-conscious, even paranoid, viewpoint. Then we present a general technique, called “dynamic watermarking,” for detecting any sort of malicious activity in networked systems of sensors and actuators. We then present a field test experimental demonstration of this technique on an automobile on a test track, a process control system, a simulation study of defense against an attack on Automatic Gain Control (AGC) in a synthetic power system, and an emulated attack on a solar-powered home. This is joint work with Bharadwaj Satchidanandan, Jaewon Kim, Woo Hyun Ko, Tong Huang, Lantian Shangguan, Kenny Chour, Jorge Ramos, Prasad Enjeti, Le Xie, and Swaminathan Gopalswamy.P. R. Kumar is a Professor of Electrical & Computer Engineering and Industrial & Systems Engineering at Texas A&M University. Prior to that, he served in the Department of Mathematics at the University of Maryland, Baltimore County (1977-84) and the Department of Electrical and Computer Engineering and the Coordinated Science Laboratory integration of distributed energy resources (DERs), such as rooftop photovoltaics installations, electric energy storage devices, and flexible loads, is becoming prevalent. This integration poses numerous operational challenges on the lower-voltage systems to which DERs are connected, but also creates new opportunities for provision of grid services. In the first part of the talk, we discuss one such operational challenge — ensuring proper voltage regulation in the distribution network to which DERs are connected. To address this problem, we propose a Volt/VAR control architecture that relies on the proper coordination of conventional voltage regulation devices (e.g., tap changing under load, or TCUL, transformers and switched capacitors) and DERs with reactive power provision capability. In the second part of the talk, we discuss one such opportunity — utilizing DERs to provide regulation services to the bulk power grid. To leverage this opportunity, we propose a scheme for coordinating the response of the DERs so that the power injected into the distribution network (to which the DERs are connected) follows some regulation signal provided by the bulk power system operator. Throughout the talk, we assume limited knowledge of the particular power system models and develop data-driven methods to learn them. We then utilize these models to design appropriate controls for determining the set-points of DERs (and other assets such as TCULs) in an optimal or nearly-optimal fashion.

    Alejandro D. Dominguez-Garcia is a professor, William L Everitt Scholar, and Grainger Associate in the Department of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign (1985-2011). His current focus includes Machine Learning (ML), Cyber-Physical Systems (CPS), security, privacy, UTM, 5G, wireless networks, and power systems. He is a member of the U.S. National Academy of Engineering, the World Academy of Sciences, and Indian National Academy of Engineering. Honors include a Doctor Honoris Causa by ETH, the IEEE Field Award for Control Systems, the Eckman Award of AACC, the Ellersick Prize of IEEE ComSoc, the Outstanding Contribution Award of ACM SIGMOBILE, the Infocom Achievement Award, and the SIGMOBILE Test-of-Time Paper Award. He is a Fellow of IEEE and ACM. His research program aims to develop technologies for providing a reliable and efficient supply of electricity — a key to ensuring societal welfare and sustainable economic growth. He received the NSF CAREER Award in 2010, and the Young Engineer Award from the IEEE Power and Energy Society in 2012. He was selected by the UIUC Provost to receive a Distinguished Promotion Award in 2014, and he received the UIUC College of Engineering Dean’s Award for Excellence in Research in 2015.



Quick Links:

C3.ai DTI Webpage

Events

Information on Call for Proposals

Proposal Matchmaking

C3.ai DTI Training Materials Overview (password protected)

C3 Administration (password protected)


Have Questions? Please contact one of us:



Recent space activity

Recently Updated
typespage, comment, blogpost
max5
hideHeadingtrue
themesocial

Space contributors

Contributors
modelist
scopedescendants
limit5
showLastTimetrue
orderupdate