
1

Solvers and partitioners
in the Bacchus project

11/06/2009

INRIA-UIUC joint laboratory

François Pellegrini

2

The Bacchus team

• Purpose

• Develop and validate numerical methods and tools
adapted to problems modeled by PDEs of hyberbolic
type

– Fluid dynamics, aeroacoustics, geophysics MHD, …

• Mixed CS / NA team
• Head: Rémi Abgrall

• 7 staff, 10+ interns/PhD/PostDocs

• Tools

• Simulation platform (FluidBox), Mesher (MMG3D),
Solvers (PaStiX, HIPS), Partitioner (Scotch), ...

3

Features of Scotch (1)

• Toolbox of graph partitioning methods,
which can be used in numerous contexts

• Sequential Scotch library
• Graph partitioning (edge or vertex)

• Mesh partitioning (elements)

• Static mapping (edge dilation)

• Graph reordering

• Mesh reordering

• Parallel PT-Scotch library
• Graph partitioning (edge)

• Static mapping (edge dilation) [prototype]

• Graph reordering

4

Features of Scotch (2)

• Usable by means of library function calls or through
command-line programs
• Can be called from C or FORTRAN

• Reentrant routines usable in a multi-threaded context

• Support of adaptive graphs and meshes

• Discontinuous data indexing to enable adding vertices

• Software developed in ANSI C

• MPI for message-passing, optional use of pthreads

• Dynamic parametrization of partitioning methods by means
of strategy strings (feature or punishment ? ;-))

• Version 5.1 available under CeCILL-C free software license

5

The current Scotch roadmap

• Devise robust parallel graph partitioning methods

• Should handle graphs of more than a billion vertices
distributed across one thousand processors

• Improve sequential graph partitioning methods if possible

• Fiduccia-Mattheyses-like local optimization algorithms
are both fast and efficient on a very large class of
graphs but are intrinsically sequential

• Investigate alternate graph models (meshes/hyper-graphs)

6

Nested dissection

• Principle [George, 1973]

• Find a vertex separator of the graph
• Order separator vertices with available indices of

highest rank
• Recursively apply the algorithm on the separated

subgraphs

A

S
B

A S B

7

Parallel multi-level framework

• Performs folding and duplication when not enough vertices
per processor
• Allows for multi-sequential exploration of problem space

8

Parallelization of the refinement phase (2)

• Parallel algorithms can also be used

• Genetic algorithms
• Diffusion algorithms

9

Jug of the Danaides (1)

• Sketch of the algorithm

10

Jug of the Danaides (1)

• Using Jug of the Danaides as the optimization algorithm in
the multi-level process :
• Smoothes interfaces

• Is slower than sequential FM (20 times for 500
iterations, but only 3 times for 40 iterations)

11

Results for parallel ordering (1)
Test Number of processes
case 2 4 8 16 32 64

audikw1
5.73E+12 5.65E+12 5.54E+12 5.45E+12 5.45E+12 5.45E+12

5.82E+12 6.37E+12 7.78E+12 8.88E+12 8.91E+12 1.07E+13

73.11 53.19 45.19 33.83 24.74 18.16

32.69 23.09 17.15 9.80 5.65 3.82

O
PTS

O
PM

t
PTS

t
PM

12

Results for parallel ordering (2)
Test Number of processes
case 2 4 8 16 32 64

cage15

4.58E+16 5.01E+16 4.64E+16 4.94E+16 4.58E+16 4.50E+16
4.47E+16 6.64E+16 † 7.36E+16 7.03E+16 6.64E+16

540.46 427.38 371.70 340.78 351.38 380.69

195.93 117.77 † 40.30 22.56 17.83

O
PTS

O
PM

t
PTS

t
PM

13

Results for parallel partitioning (1)

1 10 100 1000

10

100

1000

PT-Scotch

45Millions (time)

2 parts
4 parts
8 parts
16 parts
32 parts
64 parts
128 parts
256 parts
512 parts
1024 parts
2048 parts

of Proc [log]

T
im

e
 (

s
e

c.
)

[lo
g

]

1 10 100 1000

0

2000000

4000000

6000000

8 000000

10000000

12000000

PT-Scotch

45Millions (cut size)

2 parts
4 parts
8 parts
16 parts
32 parts
64 parts
128 parts
256 parts
512 parts
1024 parts
2048 parts

of Proc [log]

C
u

t s
iz

e

14

Results for parallel partitioning (2)

1 10 100 1000

10.00

100.00

1000.00

PT-Scotch

82Millions 2 parts
4 parts
8 parts
16 parts
32 parts
64 parts
128 parts
256 parts
512 parts
1024 parts
2048 parts

of Proc. [log]

T
im

e
(s

ec
.)

 [l
o

g]

1 10 100 1000

0

2000000

4000000

6000000

8 000000

10000000

12000000

14000000

16000000

PT-Scotch

82Millions 2 parts
4 parts
8 parts
16 parts
32 parts
64 parts
128 parts
256 parts
512 parts
1024 parts
2048 parts

of Proc. [log]

C
ut

 s
iz

e

15

Results for parallel partitioning (3)

•

• Gets worse when

number of parts
increases as direct k-
way is better than
recursive bisection
• Partition quality of

ParMeTiS is irregular
for small numbers of
parts

10 100 1000

0.70

0.75

0.8 0

0.8 5

0.90

0.95

1.00

1.05

2 parts
4 parts
8 parts
16 parts
32 parts
6 4 parts
128 parts
256 parts
512 parts
1024 parts
2048 parts

• Cut size ratio most often in favor of PT-Scotch vs.
ParMeTiS up to 2048 parts

•

16

Static mapping vs. plain partitioning

• Brings gains up to 20 % on solving time on “regular” multi-
core architectures, and even more for really heterogeneous
clusters

17

In the future ? Go dynamic !

• Next steps

• Parallel static mapping (almost done)
• Dynamic repartitioning on heterogeneous architectures

[PhD of Sébastien Fourestier]
• Parallel hyper graph partitioning ?

– Only if gains can be expected over existing works
• Move upwards to application mesh models
• Parallel adaptive remeshing [work with C. Dobrzynski]
• Take into account the numerical stability of the problem

being studied
• Take advantage of the work done in PT-Scotch on

distributed adaptive graphs

Spectrum of algebraic linear solvers

The “spectrum” of linear algebra solvers
Direct:

Robust/accurate for general
problems

BLAS-3 based implementation

Memory/CPU prohibitive for large
3D problems

Limited parallel scalability

Iterative:

Problem dependent efficiency/controlled
accuracy

Only mat-vec required, fine grain computation

Less memory usage, possible trade-off with
CPU

Attractive ”built-in” parallel features

Workshop INRIA/UIUC joint laboratory

MURGE : a common API to the sparse linear solvers
of BACCHUS

http://murge.gforge.inria.fr

Features
Through one interface, one can access to many solver strategies.
One can enter a graph/matrix in a centralized or distributed way.
Simple formats : coordinate, CSR or CSC.
Very easy to implement an assembly phase using MURGE.
MURGE proposes Fortran and C prototypes.

Workshop INRIA/UIUC joint laboratory

http://murge.gforge.inria.fr

General structure of the code

MURGE_Initialize(idnbr, ierror)
MURGE_SetDefaultOptions(id, MURGE_ITERATIVE) /* Choose general strategy */
MURGE_SetOptionInt(id, MURGE_DOF, 3) /* Set degrees of freedom */
..
MURGE_Graph_XX(id..) /* Enter the graph : several possibilities */
DO
MURGE_SetOptionReal(id, MURGE_DROPTOL1, 0.001) /* Threshold for ILUT */
MURGE_SetOptionReal(id, MURGE_PREC, 1e-7) /* Precision of solution */
...
/** Enter new coefficient for the matrix **/
MURGE_AssemblyXX(id..) /* Enter the matrix coefficients */
DO
MURGE_SetRHS(id, rhs) /* Set the RHS */
MURGE_GetSol(id, x) /* Get the solution */

END
MURGE_MatrixReset(id) /* Reset matrix coefficients */

END
MURGE_Clean(id) /* Clean-up for system "id" */
MURGE_Finalize() /* Clean-up all remaining structure */

Workshop INRIA/UIUC joint laboratory

PaStiX Features

LLt, LDLt, LU factorization with supernodal implementation
Static pivoting + Refinement: CG/GMRES
1D/2D block distribution + Full BLAS3
Simple/Double precision + Float/Complex operations

MPI/Threads implementation (SMP/Cluster/Multicore/NUMA)
Dynamic scheduling inside SMP nodes (static mapping)
Support external ordering library (PT-Scotch/METIS)

Multiple RHS (direct factorization)
Incomplete factorization with ILU(k) preconditionner
Out-of Core implementation (in SMP mode only)

Workshop INRIA/UIUC joint laboratory

Dynamic Scheduling for NUMA and multicore
architectures

Needs
Adapt to NUMA architectures
Improve memory affinity (take care of memory hierarchy)
Reduce idle-times due to I/O (communications and disk access
in future works)
Use dedicated threads for communications and disk access

Proposed solution

Based on a classical work stealing algorithm
Stealing is limited to preserve memory affinity
Use dedicated threads for I/O and communication in order to give
them an higher priority
Suitable to GP-GPU programming model

Workshop INRIA/UIUC joint laboratory

Static Scheduling Gantt Diagram

Each color gives the number of candidate processors for the task
(level in the tree)
10Million test case on IDRIS IBM Power6 with 4 MPI process of
32 threads

Workshop INRIA/UIUC joint laboratory

Dynamic Scheduling Gantt Diagram

Reduces time by 10-15% on SMP cluster
Better results are expected on NUMA clusters

Workshop INRIA/UIUC joint laboratory

Direct Solver Highlights

Main users
Electomagnetism and structural mechanics at CEA-DAM-CESTA
MHD Plasma instabilities for ITER at CEA-Cadarache
Fluid mechanics at IMB Bordeaux

Highlights

The direct solver PaStiX has been successfully used by CEA/CESTA
to solve a huge symmetric complex sparse linear system arising from
a 3D electromagnetism code on the TERA-10 CEA supercomputer.

45 millions unknowns: required 1.4 Petaflops and was
completed in half an hour on 2048 processors.
83 millions unknowns: required 5 Petaflops and was completed
in 5 hours on 768 processors.

To our knowledge a system of this size and this kind has never been
solved by a direct solver.

Workshop INRIA/UIUC joint laboratory

Block ILU(k): a supernode amalgamation algorithm for
an efficient block Incomplete factorization

Derive a block incomplete LU factorization from the supernodal
parallel direct solver

Based on existing package PaStiX
Level-3 BLAS incomplete factorization implementation
Fill-in strategy based on level-fill among block structures
identified thanks to the quotient graph
Amalgation strategy to enlarge block size to improve BLAS-3
efficiency

Highlights

Handles efficiently high level-of-fill
Solving time can be 2-4 faster than with scalar ILU(k)
Scalable parallel implementation

Workshop INRIA/UIUC joint laboratory

HIPS Features

LLt, LDLt, LU factorizations : supernodal implementation
(BLAS-3).
ILUCT, ICT : scalar column left-looking factorization.
Full iterative or hybrid direct/iterative methods.
Krylov method : CG/GMRES
Simple/Double precision and Float/Complex operations

Use external ordering and partitioning library : SCOTCH or
METIS

Requires only C + MPI
Fortran interface
Can use a domain decomposition given by the user

Workshop INRIA/UIUC joint laboratory

HIPS: domain interface based fill-in policy

1
2 3

4 5
6

56

3625124514

2312

45

2356

Robust block incomplete factorization of the Schur complement

Hierachy of separators (wirebasket like - faces , edges, vertices)
Block incomplete factorization with “geometrical” fill-in policy to
express parallelism
(Global factorization using only local sub-domain matrices)
MIS ordering to express parallelism within incomplete
factorisation steps

HIPS: preconditioners

Main features
Iterative or “hybrid” direct/iterative method are implemented.
Mix direct supernodal (BLAS-3) and sparse ILUT factorization in
a seamless manner.
Memory/Load balancing : distribute the domains on the
processors (domains > processors).

HIPS vs Additive Schwarz (from PETSc)

Experimental conditions

These curves compare HIPS (Hybrid) with Additive Schwarz from
PETSc.
Comparison on the same domain decomposition (from SCOTCH)
Parameters were tuned to compare the result with a very similar fill-in
We set MUMPS as local direct solver in PETSc

Iterations

Haltere MHD

Workshop INRIA/UIUC joint laboratory

HIPS: Parallel time [strong] scalability

MHD1 (485, 597) : 64 domains

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64

Strictly
Ideal strictly

Locally
Ideal locally

AUDI (943, 695) : 231 domains

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 1 2 4 8 16 32 64

Strictly
Ideal strictly

Locally
Ideal locally

HALTERE (1, 288, 825): 1062 domains

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8 16 32 64

Strictly
Ideal strictly

Locally
Ideal locally

AMANDE (6, 994, 683): 2062 domains

 32

 64

 128

 256

 512

 1024

 2048

 4096

 1 2 4 8 16 32 64

Locally
Ideal

Workshop INRIA/UIUC joint laboratory

Hybrid solver : Amande up to 2048 procs (Jade,
CINES)

Amandes : N=6, 994, 683 , NNZ=58, 477, 383
Additive Schwarz, ILUT or ILUk failed
2053 domains of ' 3770 nodes
(droptol0; droptolE , droptol1) = (0, 0, 0.001) ⇒ 7 iterations

Nb proc Precond. Solve Total Memory Efficiency
(sec.) (sec.) (sec.) Precond. Solve

1 803.12 104.87 907.99 1.00 1.00
2 384.12 58.84 442.95 0.99 1.00
4 205.96 46.87 252.83 0.99 0.99
8 129.35 21.00 150.35 0.97 0.99

16 65.50 18.81 84.31 0.96 0.98
32 35.15 9.42 44.57 0.93 0.97
64 18.51 4.79 23.31 0.87 0.96

128 9.84 2.41 12.25 0.83 0.94
256 5.84 1.41 7.26 0.75 0.90
512 3.80 0.69 4.49 0.62 0.82
1024 3.44 0.38 3.82 0.46 0.69
2048 4.76 0.34 5.10 0.29 0.39

Workshop INRIA/UIUC joint laboratory

Prospects for hexa-scale computing

Today

Ready for peta-scale computing
Scale up to thousands of processors

Tomorrow
Avoid global synchronizations (collective communications)
Parallelization of the pre- and post- computing steps
Better coupling between our libraries and simulation codes
(avoid data redistributions)

Workshop INRIA/UIUC joint laboratory

BACCHUS team

http://murge.gforge.inria.fr

http://scotch.gforge.inria.fr

http://pastix.gforge.inria.fr

http://hips.gforge.inria.fr

Workshop INRIA/UIUC joint laboratory

http://murge.gforge.inria.fr
http://scotch.gforge.inria.fr
http://pastix.gforge.inria.fr
http://hips.gforge.inria.fr

