
The MUMPS library

Jean-Yves L’Excellent? and MUMPS team

? INRIA and LIP-ENS Lyon

First Joint Laboratory for Petascale Computing Workshop
(INRIA and University of Illunois)

June 10-12, 2009

Session on Numerical Libraries

The MUMPS team

Patrick Amestoy (N7-IRIT, Toulouse)

Jean-Yves L’Excellent (INRIA-LIP, Lyon)

Abdou Guermouche (LABRI, Bordeaux)

Bora Uçar (CNRS-LIP, Lyon)

Alfredo Buttari (CNRS-IRIT, Toulouse)

Post-docs and Students : Indranil Chowdhurynew!, Emmanuel Agulloleft, Mila

Slavovaleft, François-Henry Rouetnew!

History

F objective : Solve Ax = b , where A is large and sparse.

F At the beginning : LTR (Long Term Research) European project,

from 1996 to 1999

F Led to first public domain version
F Since then, MUMPS was mainly supported by

I CERFACS (Toulouse),
I ENSEEIHT-IRIT (Toulouse),
I INRIA (LIP-Lyon, LaBRI-Bordeaux)

F Main projects and contracts around MUMPS :
I France-Berkeley projects (1999-2000 and 2008-2009)
I Collaboration with the SEISCOPE consortium (2006-2008)
I Contracts with CNES (2005), with Samtech S.A. (2005-2006,

2008-2010)
I French-Israeli project Multicomputing (2009-2010)
I ANR Solstice project (2007-2010)
I Starting INRIA ”ADT” (2009-2012)

What is MUMPS

MUMPS (MUltifrontal Massively Parallel sparse direct Solver)
implements a direct, multifrontal method for solving large, sparse linear
systems on parallel environments.
Solution of Ax = b is achieved in three phases :

1. Analysis : matrix is preprocessed to improved its structural
properties

2. Factorization : matrix is factorized as A = LU, LLT or LDLT

3. Solve : the solution x is computed by means of forward and
backward substitutions

1st JLPC Workshop The MUMPS library 4

Direct solver for Ax = b : only a black box ?

Preprocessing and postprocessing :
F Symmetric permutations to reduce fill :(Ax = b→ PAP tPx = Pb)

F Numerical pivoting, scaling to preserve numerical accuracy

F Maximum transversal (set large entries on the diagonal)

F Preprocessing for parallelism (influence of task mapping on parallelism)

F Iterative refinement, error analysis

Default (often automatic/adaptive) setting of the options is
available. However, a better knowledge of the options can help the
user to further improve :

F memory usage,

F time for solution,

F numerical accuracy.

Preprocessing - illustration

Original (A =lhr01) Preprocessed matrix (A′(lhr01))

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

nz = 18427
0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

nz = 18427

Modified Problem :A′x′ = b′ with A′ = PnPDrADcQP t

1st JLPC Workshop The MUMPS library 6

Impact of fill-reducing heuristics

Number of operations (millions)

METIS SCOTCH PORD AMF AMD

gupta2 2757.8 4510.7 4993.3 2790.3 2663.9
ship 003 83828.2 92614.0 112519.6 96445.2 155725.5
twotone 29120.3 27764.7 37167.4 29847.5 29552.9
wang3 4313.1 5801.7 5009.9 6318.0 10492.2
xenon2 99273.1 112213.4 126349.7 237451.3 298363.5

Time for factorization (seconds, Power 4 processors at IDRIS)

1p 16p 32p 64p 128p

audi METIS 2640 198 108 70 42
PORD 1599 186 146 83 54

1st JLPC Workshop The MUMPS library 7

Originality of our approach

Objectives
F Target large problems on parallel distributed-memory machines

F No sacrifice on numerical issues

In particular, numerical pivoting ⇒ dynamic, not fully predictable tasks
graphs

Resulting choices :

F Dynamic (runtime) scheduling and mapping of the computational
tasks (static information still necessary to help dynamic decisions)

F Can adapt to numerical pivoting and load variations

F Each processor is a scheduler (choice of the next task to process,
mapping subtasks to other processors, . . .)

F Fully asynchronous approach, guided by message receptions

1st JLPC Workshop The MUMPS library 8

Dynamic Scheduling
F Tasks graph = tree (results from matrix structure and ordering heuristic)

F Each task = partial factorization of a dense matrix (multifrontal method)

F Most parallel tasks mapped at runtime (typically 80 %)

P0

P0

P3P2

P0 P1

P3

P0 P1

P0

P0

P3

P0

P2 P2

P0

P2
P2

P0

P0

P1 P3

P3

T
IM

E

: STATIC

2D static decomposition

SUBTREES

1st JLPC Workshop The MUMPS library 9

Dynamic Scheduling
F Tasks graph = tree (results from matrix structure and ordering heuristic)

F Each task = partial factorization of a dense matrix (multifrontal method)

F Most parallel tasks mapped at runtime (typically 80 %)

P0
P1

P0

P0

P1

P3

P2

P1

P3P2

P0 P1

P3

P0 P1

P0

P0

P3

P0

P2 P2

P0

P2
P2
P3
P0

P0

P0

P1 P3

P3

T
IM

E

: STATIC

P2

: DYNAMIC

2D static decomposition

SUBTREES

1st JLPC Workshop The MUMPS library 9

Dynamic Scheduling
F Tasks graph = tree (results from matrix structure and ordering heuristic)

F Each task = partial factorization of a dense matrix (multifrontal method)

F Most parallel tasks mapped at runtime (typically 80 %)

P0
P1

P0

P0

P1

P3

P2

P1

P3P2

P0 P1

P3

P0 P1

P0

P0

P3

P0

P2 P2

P0

P2
P2
P3
P0

P0

P0

P1 P3

P3

T
IM

E

P0

: STATIC

P2

1D pipelined factorization

: DYNAMIC

P3 and P0 chosen by P2 at runtime

2D static decomposition

SUBTREES

P2
P3

1st JLPC Workshop The MUMPS library 9

Trace of execution(bbmat, 8 processors)

Process 0 5 5 5 5 4 4 5 108 5 5 5 5 5 5 5 Facto_L1 4 5 5 5 5 5 5 5 5 5

Process 1 108 4 4 108 5 108 5 5 5 5 5 5 5 Facto_L1 4 5 5 5 5 5 5 5 5 5

Process 2 108 4 4 108 5 5 5 5 5 5 5 5 108 5 108 5 5 5 5 5 5 5 5 4

Process 3 5 5 5 4 108 5 5 4 108 5 5 5 5 5 5 4 108 5 5 5 5 5 5 5 5 5

Process 4 4 108 5 5 4 5 5 5 5 5 5 108 5 108 5 5 5 5 5 5 5 5

Process 5 4 4 4 5 5 4 108 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 4

Process 6 4 4 108 108 5 108 5 5 5 5 5 5 5 108 5 5 4 108 5 5 5 5 5 5 5

Process 7 108 4 4 108 2 2 2 2 2 2 2 2 4 108 5 5 5 5 5 5 5 5 5

MPI
Application

L

9.05s9.0s8.95s8.9s

Process 0

Process 1 80 80 80 80 80 80 80 80 80

Process 2 80 80 80 80 80 80 80 80 80 80 80

Process 3

Process 4

Process 5 80 80 80 80 80 80 80 80 80 80

Process 6 80 80 80 80 80 80 80 80 80 80 80

Process 7

MPI
VT_API
Comm

9.32s9.3s9.28s

MUMPS SuperLU DIST

1st JLPC Workshop The MUMPS library 10

MUMPS vs other sparse direct solvers

F Address wide classes of problems

F Very good numerical stability (dynamic pivoting)

F Wide range of numerical features

F Parallelism and asynchronism harder to manage than in static
approaches (e.g. Pastix or SuperLU DIST)

F Current version is MPI-based, no explicit management of threads
inside MUMPS

1st JLPC Workshop The MUMPS library 11

Users

F Academics and industrials (Boeing, BRGM, CEA, CNES, EADS,
EDF, ESI Group, Free Field Technologies, Samtech, . . .),

F Types of applications :
I Structural mechanics, Fluid dynamics
I Astrophysics, Magnetohydrodynamics, Physical chemistry
I Seismic imaging, Ocean modelling
I Econometric models
I Oil reservoir simulation
I Acoustics and electromagnetics wave propagation
I Biomechanics, Medical image processing
I Modeling of organs,
I Heat transfer analysis
I Research in domain decomposition and hybrid direct-iterative

solvers
I . . .

F More and more groups rely on MUMPS in products that they
redistribute (Petsc, Samcef, Ipopt, Trilinos, Matlab*P, . . .)

User’s distribution map

1000+ download requests per year

1st JLPC Workshop The MUMPS library 13

MUMPS at UIUC

Downloads from UIUC users from :
F Center for Computational Electromagnetics

F Siebel Center for Computer Science

F Center for Simulation of Advanced Rockets

F Department of Civil and Environmental Engineering

F Department of Electrical and Computer Engineering

F National Center for Supercomputing Applications

Success story (NCSA news, April 2002) : “A taste of Teraflop”

http://www.ncsa.uiuc.edu/News/Access/Stories/MUMPS/

1st JLPC Workshop The MUMPS library 14

http://www.ncsa.uiuc.edu/News/Access/Stories/MUMPS/

MUMPS : Wide range of features

F Symmetric or unsymmetric, definite or indefinite matrices

F Real or complex, single or double precision

F Assembled (distributed) or elemental matrices

F Sparse, multiple right hand sides

F Null pivots detection, estimate kernel

F 64-bit integers support

F Iterative refinement and backward error analysis

F Partial factorization and Schur complement calculation

F Leverages the high efficiency of Level-3 BLAS libraries

F Interface for AMD, AMF, PORD, Metis/ParMetis, SCOTCH/PT-SCOTCH
ordering methods

F Fortran, C, MATLAB and SciLAB interfaces

F out-of-core version

F free of charge

1st JLPC Workshop The MUMPS library 15

Recently added features

1st JLPC Workshop The MUMPS library 16

Parallel scaling (B. Uçar et.al.)

MUMPS includes a parallel implementation of an iterative scaling
operation of the type

A(k+1) = D
(k)
r A(k)D

(k)
c

where D
(k)
r = diag(

√
||A(k)

i∗ ||p)−1, D
(k)
c = diag(

√
||A(k)
∗i ||p)−1,

Flops # of entries in factors (×106)
(×106) estimated effective

scaling OFF ON OFF ON OFF ON

a0nsdsil 7.7 2.5 0.42 0.42 0.57 0.42

C-54 281 209 1.42 1.42 1.76 1.58

1st JLPC Workshop The MUMPS library 17

Parallel ordering and symbolic facto (A. Buttari et.al.)

1 – First pass adjacency graph of the matrix to a parallel ordering tool
(PT-SCOTCH or ParMetis). As a result, a pivotal order and a
binary separators tree are returned

1st JLPC Workshop The MUMPS library 18

Parallel ordering and symbolic facto (A. Buttari et.al.)

2 – Then each processor separately performs the symbolic elimination
of the variables contained in a subtree. This symbolic factorization
is based on the usage of quotient graphs with a restarting
technique that mixes left and right looking factorization methods

1st JLPC Workshop The MUMPS library 18

Parallel ordering and symbolic facto (A. Buttari et.al.)

3 – The host processor eliminates the variables in the top part of the
tree using the same technique

1st JLPC Workshop The MUMPS library 18

Parallel ordering and symbolic facto (A. Buttari et.al.)

4 – The distributed data are merged into a centralized data structure
that is used in subsequent steps of the analysis phase like
amalgamation, mapping etc.

1st JLPC Workshop The MUMPS library 18

Parallel ordering and symbolic facto (A. Buttari et.al.)

F Either PT-SCOTCH or ParMetis can be used
F Typical improvements of PT-SCOTCH vs ParMetis (3.7 million by

3.7 million matrix from BRGM)

8 16 32 64
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

processors

im
pr

ov
em

en
t

BRGM

fr. size

fac. size

flops

time

1st JLPC Workshop The MUMPS library 19

Kernel computation

Finding the null-space X such that
AX = 0 is equivalent to solving, for each
null pivot j detected at facto time the
equation

Ux = ej

F only the nodes in the subtree rooted at node j are involved in the
computation

F the accuracy of the method can be improved by delaying some
pivots to the root of tree which is then factorized by means of a
rank-revealing QR operation

1st JLPC Workshop The MUMPS library 20

Out-Of-Core (PhD thesis of E. Agullo & M. Slavova)

1st JLPC Workshop The MUMPS library 21

Out-Of-Core (PhD thesis of E. Agullo & M. Slavova)

1st JLPC Workshop The MUMPS library 21

Out-Of-Core (PhD thesis of E. Agullo & M. Slavova)

1st JLPC Workshop The MUMPS library 21

Out-Of-Core (PhD thesis of E. Agullo & M. Slavova)

The performance of an OOC solver strongly depends on :
F number and speed of disk accesses

F number of processors and volume of data per processor

F regularity of disk accesses and scheduling of computational tasks

F low-level implementation of I/O features

1st JLPC Workshop The MUMPS library 21

Out-Of-Core (PhD thesis of E. Agullo & M. Slavova)

F Factorization time on AMD platform

Direct I/O Pagecache In Core

Matrix Synch. Asynch. Synch. Asynch.

SHIP003 43.6 36.4 37.7 35.0 33.2
XENON2 45.4 33.8 42.1 33.0 31.9
CONESHL2 158.7 123.7 144.1 125.1 out-of-mem
QIMONDA07 159.2 89.6 190.1 171.1 out-of-mem

F Solution time on CRAY XD-1

Factors Workspace Solution
procs size (MB) size (MB) time

FIFO 2 2547 559 606
NNS 2 2547 559 603

FIFO 8 1512 183 368
NNS 8 1512 183 217

FIFO 32 340 42 149
NNS 32 340 42 114

1st JLPC Workshop The MUMPS library 22

OOC : Computing entries in A−1 (F.-H. Rouet and M.
Slavova)

Computing columns of A−1 amounts to solving systems Axj = ej . If
only a small amount of elements must be computed, the
computational cost can be significantly reduced by exploiting the
sparsity of RHSs. Example : on an application from astrophysics (CESR,
Toulouse) ; computational time for diag(A−1) (size = 148K) :

F without exploiting the sparsity : 11000 seconds

F exploiting the sparsisty : 760 seconds

1st JLPC Workshop The MUMPS library 23

OOC : Computing entries in A−1 (F.-H. Rouet and M.
Slavova)

Computing columns of A−1 amounts to solving systems Axj = ej . If
only a small amount of elements must be computed, the
computational cost can be significantly reduced by exploiting the
sparsity of RHSs. Example : on an application from astrophysics (CESR,
Toulouse) ; computational time for diag(A−1) (size = 148K) :

F without exploiting the sparsity : 11000 seconds

F exploiting the sparsisty : 760 seconds

1st JLPC Workshop The MUMPS library 23

OOC and Memory

Peak of active memory for multifrontal approach (factors on disk)
(×106 entries)

METIS SCOTCH PORD AMF AMD
gupta2 58.33 289.67 78.13 33.61 52.09
ship 003 25.09 23.06 20.86 20.77 32.02
twotone 13.24 13.54 11.80 11.63 17.59
wang3 3.28 3.84 2.75 3.62 6.14
xenon2 14.89 15.21 13.14 23.82 37.82

Memory Efficiency of MUMPS (with factors on disk)

Number of processors 16 32 64 128
AUDI KW 1 0.16 0.12 0.13 0.10

CONESHL MOD 0.28 0.28 0.22 0.19
CONV3D64 0.42 0.40 0.41 0.37
QIMONDA07 0.30 0.18 0.11 -

ULTRASOUND80 0.32 0.31 0.30 0.26

e(p) = Sequential storage
p×maxi=1,...,p(Parallel storage(i))

OOC and Memory Scalability

Processor-to-node mapping

1st JLPC Workshop The MUMPS library 25

OOC and Memory Scalability

Processor-to-node mapping : All-to-one mapping

F optimal memory scalability : Mseq/nprocs

F poor parallelism : only intra-node parallelism is exploited

1st JLPC Workshop The MUMPS library 25

OOC and Memory Scalability

Processor-to-node mapping : Proportional Mapping

1st JLPC Workshop The MUMPS library 25

OOC and Memory Scalability

Processor-to-node mapping : Proportional Mapping

1st JLPC Workshop The MUMPS library 25

OOC and Memory Scalability

Processor-to-node mapping : Proportional Mapping

1st JLPC Workshop The MUMPS library 25

OOC and Memory Scalability

Processor-to-node mapping : Proportional Mapping

F suboptimal memory scalability due to tree traversal order

F good parallelism : inter-node and intra-node parallelism exploited

F flops aware

1st JLPC Workshop The MUMPS library 25

OOC and Memory Scalability

Processor-to-node mapping : Memory-aware mapping

1st JLPC Workshop The MUMPS library 25

OOC and Memory Scalability

Processor-to-node mapping : Memory-aware mapping

1st JLPC Workshop The MUMPS library 25

OOC and Memory Scalability

Processor-to-node mapping : Memory-aware mapping

F node factorizations are serialized if memory constrains are not
satisfied

F under development

1st JLPC Workshop The MUMPS library 25

Future plans

F analyze and produce methods to optimize computation of A−1

F pursue developments around out-of-core features
F multi-core parallelism

I exploit mc in dense frontal matrix factorizations (not just by relying
on threaded BLAS)

I exploit mc outside dense frontal matrix factorizations (assembly
operations, analysis phase)

I keep an eye on the arrival of standards/abstractions related to
gp-gpu (we are not ready yet !)

F work on memory scalability for large numbers of processors

F experiment with larger and larger problems

1st JLPC Workshop The MUMPS library 26

Future plans

F analyze and produce methods to optimize computation of A−1

F pursue developments around out-of-core features
F multi-core parallelism

I exploit mc in dense frontal matrix factorizations (not just by relying
on threaded BLAS)

I exploit mc outside dense frontal matrix factorizations (assembly
operations, analysis phase)

I keep an eye on the arrival of standards/abstractions related to
gp-gpu (we are not ready yet !)

F work on memory scalability for large numbers of processors

F experiment with larger and larger problems

F research directions motivated by application needs (solving larger
problems efficiently and accurately is one of the main needs)

F progress in sparse direct solver technology should naturally benefit
to hybrid direct-iterative solvers
1st JLPC Workshop The MUMPS library 26

Thanks / Merci

1st JLPC Workshop The MUMPS library 27

