4 ESs
d i 1
i |
. -
E 4 ' l

amming Model at Extreme
Scale

Marc Snir
June 2009

' PARALLEL@ILUI\I |

www.parallel. illinois.edu

Supercomputer Performance
Evolution

1.E+07 1
1.E+06 -
% ? 9 9
1.E+05 i i i i
" e 3 G G < i i
Q e D
e 1E+04 —=4:0 0 8 i i i ﬁ Q
© oo BE i i i i
1.E+03 - 58% 5 E
-~ .8’ D a
: 5
1.E+02~”‘igi ii%
e B i
it’
1.E+01 : - . . -
1/1/93 1/1/95 1!1/97 1/1/99 1/1/01 1/1/03 1/1/05 1/1/07 1/1/09
¢ ABmax © Rpeak Rmax Leading Edge —— — Rpeak Leading Edge

2 www.parallel.illinois.edu (Kogge et a|) PARA'.I.E I.@ | |.I.| N O | S

Performance growths 1,000-fold
every 11 years

1.E+10 - :
xaFlops .~
1.E+09 P

1.E+08 -
1.E+07 - PetaFlops
1.E+06 - —
1.E+05 - Al
1.E+04 - e

TeraFlops (> ¢
1.E+03 —
1.E+02 -
1.E+01 - .

GPFlops .’
1.E+00 —P—i .
X s

1,E-01 Xl T “ T T ? l' T T T T
1/1/72 1/1/76 1/1/80 1/1/84 1/1/88 1/1/9211/1/96 1/1/00 1/1/04 1/1/08 1/1/12 1/1/16 1/1/20

3 www.parallel.illinois.edu PA RAl.I.E I.@ | |.I.| N O | S

,.

GFlops

Clock (MHz)

Factors of Performance Growth

* Growth in clock rate — now slowing

1.E+05 - =
'Dgl] goo = o
O

1.E+04 L ™

A P
. o
1.E+03 oy ‘ﬁ ’ oe
1.E+02 ’./ “go ““,
4 *s o o
1.E+01 * ! A ! T T 1
1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Historical Single Core Historical Multi-Core
o ITRS Max Clock Rate (12 invertors) = = Historical: CAGR=1.3

4 www.parallel.illinois.edu

PARALLEL@ILLINOIS

Factors of Performance Growth

 Growth in number of processors and (SIMD) IPC — now

accelerating

1.E+06 +
.
1.E+05 - "R Ew
’g<><><>' .
E y §°§§
a
= 1.E+04 - R R RN 8 o s 888888
S I S Ssaase 11 T LAE
5 g§<><><><>o<> Oggsggs
o
s1.E+03-l088@0l00§§§§§838 o
2 Z:ooogo o o
o 00 O
§1.E+02- R e s © 00 g g
o 8
o © o O
o
1.E+01 -
OO O O
1.E+00 T T T T T T
1/1/93 1/1/95 1/1/97 1/1/99 1/1/01 1/1/03 1/1/05 1/1/07

5 www.parallel.illinois.edu

1/1/09

PARALLEL@ILLINOIS

Toward Exascale

* Transistor density continues to increase (Moore’s
law)

— up to 2020 — 8 nm; not clear what happens beyond
* Clock frequency does not increase

— Power barrier

* Increased performance comes only from
increased number of cores per chip, increased
use of SIMD instructions and increased number
of chips

6 www.parallel.illinois.edu PARAI_I_EL ”_l.l NO'S

Exascale in 2020

e Extrapolation of current technology

— 100M- 1B threads
— 100-500 MWatts

* Energy consumption might be reduced one
order of magnitude with aggressive
technology and architecture change

— Low power cores (more cores)
— Aggressive voltage scaling (more errors)
— Aggressive DRAM redesign (less bandwidth)

PARALLEL@ILLINOIS

7 www.parallel.illinois.edu

Main Issues

* Increased parallelism
* Resiliency

* Variability

* Virtualization

* Hybrid HW

s wparalieLilinois.edu ‘ PARALLEL@ILLINOIS

Managing with 1M-1B Threads

* Increased parallelism

5 wparalieLilinois.edu . PARALLEL@ILLINOIS

Scaling Applications

* Weak scaling: use more powerful machine to
solve larger problem
— increase application size and keep running time
constant; e.g., refine grid
— Larger problem may not be of interest
— May want to scale time, not space (molecular
dynamics)

— Cannot scale space without scaling time (iterative
methods): granularity decreases and

communication increases
10 www.parallel.illinois.edu PARAI.I.EL | |.|.| N O | S

Scaling Iterative Methods

 Assume that number of cores (and compute
power) are increased by factor of k*

e Space and time scales are refined by factor of
k

 Mesh size increased by factor of kxkxk

 Local cell dimension decreases by factor of k%4

e Cell volume decreases by factor of k34 while
area decreases by factor of k%4; area to
volume ratio (communication to computation
ratio) increases by factor of k3/2.

1t wwparalellinois.ede PARALLEL@ILLINOIS

Debugging and Tuning: Observing
1B Threads

e Scalable infrastructure to control and
instrument 1B threads

e Parallel information compression to identify
“anomalies”

* Need to ability to express “normality” (global
correctness and performance assertions)

12 waparalellinois.ede PARALLEL@ILLINOIS

Main Issues

* Resiliency

12 wwparalellinois.eds 3 PARALLEL@ILLINOIS

Decreasing Mean Time to Failure

 Problem:
— More transistors
— Smaller transistors
— Lower voltage
— More manufacturing variance
* Current technology: global, synchronized checkpoint; HW error
detection
* Future technology:

— Continued HW error detection with Increased HW redundancy & error
checking

— More efficient checkpoint (OS?, compiler? application?)
* OK if number of components stays constant

— Integrated HW/SW/application approach for fault detection, isolation
and local recovery

* May be needed later if number of components per system
increases

14 waparalellinois.ede PARALLEL@ILLINOIS

Main Issues

* Variability

5 waparalellinois.ede " PARALLEL@ILLINOIS

Bulk Synchronous

 Many parallel applications are written in a “bulk-
synchronous style”: alternating stages of local
computation and global communication

 Models implicitly assumes that all processes
advance at the same compute speed

* Assumptions breaks down for an increasingly
large number of reasons

— Black Swans

— OS jitter

— Application jitter
— HW jitter

PARALLEL@ILLINOIS

16 www.parallel.illinois.edu

Jitter llustrated

Work Ended = -

WokEded--l- L, R g R W SR G, SR Em e Em gm e -

—% Communication ‘
w

&
-

** -+ Ide

Q
E
- . . . '-
Stat Work = = - ey R SO i — e DA ey P
1 2 3 4 5 6 7 Nodes —»
Collectives in a cluster with no OS Jitter Collectives in a cluster with OS Jitter

OS jitter has been empirically measured to slow down
computations by a factor of 2 or more

17w paralellinols.de (1BM) PARALLEL@[LLINOIS

Jitter Causes

 Black Swans

— If each thread is unavailable (busy) for 1 msec once a
month, than most collective communications involving 1B
threads take > 1 msec (the black swan effect)

 OS jitter
— Background OS activities (daemons, heartbeats...)

* HW jitter

— Background error recovery activities (e.g., memory
scrubbing & error handling); power management;
management of manufacturing variability; degraded
operation modes

* Application jitter
— Input-dependent variability in computation intensity
Need to move away from bulk model

18 www.parallel.illinois.edu PARAI_I_EL ”_l.l NO'S

Possible Approaches

e User helped source code optimization

— Replace blocking communication (including collective
communication) with non blocking communication

— Refactoring tools help user make changes correctly
MPI_Barrier MPI_Barrier_start

MPI|_Barrier_end

— Code between start—end should not conflict with
code at other processes not separated by full barrier

19 www.parallel.illinois.edu PARAI_I_EL ”_l.l NO'S

Possible Approaches (2)

 Compiler optimizations (no change in source
code)

— execute “sends” as early as possible; execute
“receives” as late as possible

— tradeoff with communication aggregation

* Run-time optimization: virtualization

20 www.parallel.illinois.edu PARAI.I.E'. ”_l.l NO'S

Main Issues

e Virtualization

21 wwsparalellinois.eds ” PARALLEL@]LLINOIS

Task Virtualization

* Multiple logical tasks are scheduled on each physical
core; tasks are scheduled nonpreemptively; task
migration is supported

— Hides variance and communication latency

— Helps with scalability (decouples # tasks from #
cores)

— Helps with resiliency

— Needed for modularity (multiphysics/multiscale
codes — handling parallel coupling of modules)

— Improves performance (better locality)
— Scales (Charm++/AMPI)

— Can be implemented below MPI or PGAS

languages
22 www.parallel.illinois.edu 22 PA R A I_ I. E |. | |.|.| N O | S

Task Virtualization Styles

e Varying, user controlled number of tasks (AMPI)
— Locality achieved by load balancer

e Recursive (hierarchical) range splitter (TBB)

— Method to split (recursively) problem in two sub-
problems

— Method to combine two sub-solutions

— Method to decide when sub-problem is small enough
to be solved sequentially

— Method to solve sub-problem sequentially

— Locality is achieved implicitly
23 wakparalieLliaots e . PARALLEL@ILLINOIS

Main Issues

e Hybrid HW

2t wwsparalellinois.ede ” PARALLEL@]LLINOIS

Hybrid Communication

 Multiple levels of caches and of cache sharing

e Different communication models intra and inter node
— Coherent shared memory inside chip (node)
— rDMA (put/get/update) across nodes

* Hybrid features change every HW generation

* Need to be able to easily adjust number of cores & replace
inter-node communication with intra-node communication

* Easy to “downgrade” (use shared memory for message
passing); hard to “upgrade”; hence tend to use lowest
commonality (message passing)

 No good interoperability between shared memory (e.g.,
OpenMP) and message passing (MPI)

25 www.parallel.illinois.edu PARAI_I_EL ”_l.l NO'S

Possible Directions

* Express cache oblivious algorithms using
recursive range splitting
— May provide 3 methods:
* Distributed memory splitting/merging
* Shared memory splitting/merging
e Sequential
* (Low hanging fruit) Enable shared memory
communication across MPI tasks

26 www.parallel.illinois.edu PARAI_I_EL ”_l.l NO'S

Hybrid Computation

* Vector instructions
* Different core types
e Accelerators

e Can significantly reduce energy per flop
* Require (now) different source code

* Easy to compile CUDA to multicore; hard to
compile OpenMP to GPU

27 wwsparalellinois.eds PARALLEL@ILLINOIS

Possible Approaches

* Use library auto-tuning

* Reduce semantic gap at architecture level; use
(static or dynamic) compilation

28 www.parallel.illinois.edu PARAI.'.EI_ ”_l.l NO'S

Shared Memory Programming

* Explicit parallel control

* Global name space: any thread can access any
variable by same name

* Caching, not copying: local copies are needed for
performance, but are accessed using same global
name

— copying can be implicit (HW caches) or explicit (check-
in/check-out, ownership transfer)

* Enforced determinism: conflicting accesses are
always ordered

— relaxed ordering for associative operations is OK

29 www.parallel.illinois.edu PARAI_I_EL ”_l.l NO'S

Thread Parallelism: OpenMP

* Explicit parallel control, global name space,
implicit caching

* No information on communication patterns =>
Hard to optimize communication in large systems
with no HW support to cache coherence

* Does not prevent memory races and suffer from
hard to find synchronization bugs

 Encourages programming style with low
granularity and low locality

30 www.parallel.illinois.edu PARAI_I_EL ”_l.l NO'S

PGAS Languages: UPC & CAF

e Simple parallel control (as MPI): fixed number
of communicating tasks

* Global name space, but no caching

* No information on communication patterns =>
hard to optimize communication

* Does not prevent memory races

* Main advantages:
— Easy to port from MPI
— Communication is compiled and can be optimized

31 www.parallel.illinois.edu PARAI_I_EL ”_l.l NO'S

Possible Alternative

* Global name space, explicit control (similar to OpenMP)

* Shared data structures are partitioned by the program into
disjoint regions
— declaratively (type annotations, directives)
— imperatively

* Protocol is defined and enforced to ensure that concurrent
accesses to a region are non-interfering

— Read/Write: only one writer per region at any time
— Read/Write/Accumulate ...

* |Informally: programmer defines “logical cache lines”; cache
line state can only change at synchronization points

32 www.parallel.illinois.edu PARAI_I_EL ”_l.l NO'S

Two Examples

 Multiphase Shared Arrays (Kale)
— Arrays are partitioned, with one “owner thread” per
partition
— Each array can be in one of three modes: shared/exclusive/
accumulate
— Protocol is enforced by run-time (assume simple
partitions)
* Deterministic Parallel Java (V Adve)
— Type annotations are used to partition the heap

— Effect annotations are used to specify which region can be
affected (read/written) by each method or code block

— Protocol is enforced by compiler

33 www.parallel.illinois.edu PARAI_I_EL ”_l.l NO'S

Research Issues

e Simple, static partitions vs. complex, dynamic
partitions
— Note: DPJ regions are defined declaratively, but
regions can be execution-dependent (nested types,
parametric types)
 Compile time enforcement (preferred, but
possibly restrictive) vs. run-time enforcement
(less restrictive, but possibly expensive, especially
for irregular partitions)

* Expressiveness and ease of programming

34 www.parallel.illinois.edu PARAI_I_EL ”_l.l NO'S

35 www.parallel.illinois.edu PA RAI.I.E I.@ | I.I.l N O | S

