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Opening: NACHOS project-team

Scientific objectives

@ Design, analysis and validation of numerical methods and high performance
resolution algorithms for the computer simulation of evolution problems in
complex domains and heterogeneous media

@ Research directions

High-order finite element discretization methods on simplicial meshes

Hybrid explicit/implicit time integration strategies

Domain decomposition resolution algorithms

High performance computing related aspects

Computational electromagnetics

@ System of Maxwell equations
@ Interaction of EM fields with biological tissues
@ Interaction of charged particles with EM fields (Vlasov/Maxwell equations)

Computational geoseismics

@ System of elastodynamic equations
@ Propagation of seismic waves in heterogeneous geological media
@ Numerical modeling of planar and non-planar faults (earthquake dynamics)
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Opening: context and goal

@ Modeling issues

e Electromagnetic wave propagation in heterogeneous media
o Time-harmonic regime, high frequency (100 MHz to 3 GHz)
o Irregularly shaped domains, complex geometrical features

@ Target applications

e Human exposure to electromagnetic fields

e Medical applications (in-body miniaturized sensor/antenna design
for wireless monitoring systems)

@ Numerical ingredients
o Unstructured meshes (triangles in 2D, tetrahedra in 3D)

e High order Discontinuous Galerkin DG discretization methods

S. Lanteri (INRIA, NACHOS project-team)



Opening: context and goal

@ Modeling issues
e Electromagnetic wave propagation in heterogeneous media

o Time-harmonic regime, high frequency (100 MHz to 3 GHz)

o Irregularly shaped domains, complex geometrical features

@ Target applications
e Human exposure to electromagnetic fields
e Medical applications (in-body miniaturized sensor/antenna design

for wireless monitoring systems)
@ Numerical ingredients

o Unstructured meshes (triangles in 2D, tetrahedra in 3D)
e High order Discontinuous Galerkin DG discretization methods

@ Goal of this study
o Design of domain decomposition based hybrid iterative-direct solvers for

algebraic systems resulting from DG discretization
o Part of this work is undertaken in the context of the PhylLeaS associate team
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Opening: example application

@ Human exposure to electromagnetic fields
e Multi-parametric studies, uncertainty quantification
(source position, morphology, electromagnetic parameters)

@ Plane wave exposure (F=2.14 GHz)
@ Tetrahedral mesh: 899,872 vertices and 5,335,521 elements
o Discretization by a DG-P, method: 320,131,260 d.o.f
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Opening: related works

@ Full set of Maxwell equations
@ High order finite element discretization

@ Domain decomposition solver

e J.J.W. van der Vegt, M.A. Botchev at al., University of Twente
o High order edge element, hp-adaptivity, sparse direct solver

P. Solin, h-FEM group, University of Nevada
@ High order edge element, hp-adaptivity, sparse direct solver

J. Zou at al., The Chinese University of Hong Kong

o Low order edge element, non-overlapping DD solver

e J.-F. Lee at al., Ohio State University

o High order edge element, non-overlapping DD solver, non-matching grid
@ Schwarz algorithm with Robin interface conditions

e A. Schadle, F. Schmidt at al., ZIB

@ Schwarz algorithm with transparent interface conditions
approximated by a PML method

e High order edge element (mixed triangular/quadrangular mesh)

o Scattering by periodic structures
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Opening: related works

e J. Jin at al., UIUC, Department of Electrical and Computer Engineering
Full set of Maxwell equations

Time-harmonic and time-domain formulations

High order edge element discretization

Domain decomposition solver
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Opening: related works

e J. Jin at al., UIUC, Department of Electrical and Computer Engineering
Full set of Maxwell equations

Time-harmonic and time-domain formulations

High order edge element discretization

Domain decomposition solver

@ Mini-symposium at the 19th International Conference on Domain
Decomposition Methods (DD19), August 17-22, 2009, Zhangjiajie of China
Domain decomposition methods for electromagnetic wave propagation
problems

o J. Jin

o J.-F. Lee, Ohio State University
ElectroScience Laboratory, ECE Department

e J. Zou, The Chinese University of Hong Kong
Department of Mathematics

o Wei Hong, Southeast University, Nanjing
State Key Laboratory of Millimeter Waves

o M. Gander, University of Geneva, Mathematics Section

S. Lanteri (INRIA, NACHOS project-team)



Outline

@ The time-harmonic Maxwell equations

@ Discontinuous Galerkin discretization methods
@ Basic properties
Formulation
Matricial system
Numerical results for the 2D time-harmonic Maxwell equations

© Domain decomposition solver
@ Formulation in the continuous case
@ Formulation in the discrete case
@ 3D application

© Closure
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The time-harmonic Maxwell equations

ciwE —rot(H) = 0,
piwH +rot(E) = 0
@ E = E(x) : electric field
@ H = H(x) : magnetic field
@ ¢ = ¢g(x) : electric permittivity
@ 1= u(x) : magnetic permeability
@ o = o(x) : electric conductivity
@ Vacuum impedance: z, = ?
0

Boundary conditions
e PEC boundary (I'"): nx E=10
o Absorbing boundary (I'*): n X E4+2zn x (n x H) =n x E* 4 zn X (n x H*)
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The time-harmonic Maxwell equations

Pseudo-conservative system form

QW, + V- F(W) =J

Fuw) = | O

Fw) = | %

Fw) = | %

W = t (0, HZ7 7Hy707 7EZ7 E}/)

W= ' (_HZ707 HX7 EZ707 _Ex)

W = t(HY7_HX707_E)’7 EX,O)
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Discontinuous Galerkin discretization methods

Basic properties

Ulx) Ulx)

X; X X X1

FE, continuous P1 interpolation DG, local P1 interpolation

Can easily deal with discontinuous coefficients and solutions
Can handle unstructured, non-conforming meshes
High order accurate methods with compact stencils

Naturally lead to discretization (h-) and interpolation order (p-) adaptivity

Amenable to efficient parallelization

@ But lead to larger problems compared to continuous finite element methods
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Discontinuous Galerkin discretization methods

Basic properties

DG for electromagnetic wave propagation in heterogeneous media

@ The basic support of the DG method is the element
(triangle in 2D and tetrahedron in 3D)

@ Heterogeneity is ideally treated at the element level
o Mesh generation process is simplified
e Discontinuities occur at material (i.e element) interfaces

@ Wavelength varies with € and p
e For a given mesh density, approximation order can be set on an element
basis to fit to the local frequency resolution criteria

Discretization of irregularly shaped domains

@ Unstructured meshes are preferred
@ Local refinement is made easier by allowing non-conformity

@ Non-conformity opens the route to the coupling of different discretization
methods (e.g structured/unstructured)
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Discontinuous Galerkin discretization methods

Formulation

Triangulation: 7, = UT,'

Assume J = 0 for simplicity of the presentation

@ o is a sufficiently regular test function
o n; = ‘(n,n?, n?)
/ ¢ (IwQW + V- F(W))dx =0
& / iw QW pdx —/ V- F(W)dx—l—/ (F(W)-n)pdo =0
Ti Ti T
@ Local set of degrees of freedom for 7;: W;; € R®
@ Local approximation: Wi(x) € P; = Pn[7;] and W;( ZW,Jgp,J

& le,/W,cpdx—/V(p W)dx—i—Z/ -n;)pdo =0

JEV;
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Discontinuous Galerkin discretization methods

Formulation

F(W), = F(W),,, and Qi — eilxs 93><3
O3x3  pikxs

¢i = (pir, pizs -+ Pid;)
Vi={j|minT #0}and aj =7N7;

Calculation of the boundary term on aj: numerical flux

F(W)i + F(W);
2
~ FH(W)i + F(W);

o Centered scheme : F(W)|,, ~

o Upwind scheme :  F(W)|

aij

Integration by parts + algebraic manipulations

J%;i/é’ij(F(W).ng)cpda ;/ (V- F(W))) @ + Ve - F(W);) dx
72/ (F(W); - njj) pdo

JEV;

_|_
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Discontinuous Galerkin discretization methods

Formulation

Weak formulation

3 3
ini/ W,-apdx + ; / ((Z akaXkWi> @ — ZakaOWXkWi> dx
i i k=1 k=1
1
+ 5 Z / MijW;pdo =0

Jjev; v ai
03x3 Ny
vk = «
{—ka 03x3]
> 0 N,
M, = Mgk — | 3x3 n d M; = M,,
;n |:_Nn O3xs | 2" g Y
3
No = D n*N
k=1
Ni = N,
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Discontinuous Galerkin discretization methods

Matricial system

Local algebraic system of equations

2iwYW; + Zyka + Z VW,

aUGF
oo
A E ylmW + E yla i = E yiooWi
a;€Fl, 2 EF] EHEF

o W; ="(W;1;,Wp, - ,Wi.) , W;isa6d; x 1 vector
o F'= FiUFiUFL: set of faces of 7;
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Discontinuous Galerkin discretization methods

Matricial system

Local algebraic system of equations

2wW;  + ZWW + Y VW

aU€.7:
A ylmW + yla i = yioowi
a;EFI, 2 EF] EHEF

oW, = t(W,'17W,‘27 000 7Wid,-) , Wi is a 6d; x 1 vector
e Fi= féUf;Uf,’;,: set of faces of 7;

|

Global algebraic system of equations: AW = b

Ai = 2-wy,+2y*k+ S Vimt > Va
a,le]:’ a,jef'
Aj = Yy forjeFy , bi= > YW
a,-jef;

@ Aji and Aj are 6d; X 6d; matrices
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Discontinuous Galerkin discretization methods

Numerical results for the 2D time-harmonic Maxwell equations

piwHy + 3852 =0
. OE,
piwH, — X 0
OH OH
. Ez _ y x _
eiw pe + 3y 0

@ DGTH-P, method based on Lagrange (nodal) interpolation

e Triangular mesh
o Sparse block matrix, 3n, X 3n, (with n, = ((p + 1)(p + 2))/2)

o MUMPS multifrontal sparse matrix solver
(P.R. Amestoy, |.S. Duff and J.-Y. L'Excellent, CMAME, Vol. 184, 2000)
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Discontinuous Galerkin discretization methods

Numerical results for the 2D time-harmonic Maxwell equations

@ Plane wave in vacuum, F=600 MHz
@ Non-uniform triangular mesh

e hp, and hpy: minimal and maximal edge length
o CPU: factorization + solution time (Intel Xeon/2.33 GHz)

| # triangles | n, |  hm/hm_ | Method [ CPU [ RAM (LU/total) |
366 35,466 | 0.021/0.130 [ DG-P; | < 1.0 sec 1MB/ 6 MB
- 108,120 - DG-P, | < 1.0 sec 3 MB/ 16 MB
- 295,152 - DG-P; | < 1.0 sec 6 MB/ 33 MB
- 644,922 - DG-P, | <20sec | 12MB/ 60 MB
1,464 142,440 | 0.011/0.066 | DG-P; | < 1.0 sec 5 MB/ 26 MB
- 433,200 - DG-P, | <1.0sec | 15MB/ 69 MB
- 1,182,336 - DG-P3 2.1 sec 32 MB/ 149 MB
- 2,582,712 - DG-P, 4.0 sec 57 MB/ 266 MB
5,856 570,912 | 0.005/0.033 | DG-P; 1.8 sec 28 MB/ 125 MB
- 1,734,240 - DG-P, 4.7 sec 76 MB/ 326 MB
- 4,732,800 - DG-P; | 10.0sec | 156 MB/ 682 MB
- 10,336,896 - DG-P, | 20.6 sec | 274 MB/1217 MB
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Discontinuous Galerkin discretization methods

Numerical results for the 2D time-harmonic Maxwell equations

@ Numerical convergence: non-uniform triangular mesh

1B - Bl e

Vndl lotal

| [PL[ P2 P3]P4|
E, [19]30[38]5.1
H|12[22]29]40
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Discontinuous Galerkin discretization methods

Numerical results for the 2D time-harmonic Maxwell equations

@ Scattering of a plane wave by a dielectric cylinder, F=300 MHz

Contour lines of E,
Left: exact solution - Right: DG-P, method
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Discontinuous Galerkin discretization methods

Numerical results for the 2D time-harmonic Maxwell equations

@ Scattering of a plane wave by a dielectric cylinder, F=300 MHz
o # vertices = 4,108 and # elements = 8,054
@ hy and hy: minimal and maximal edge length
o CPU: factorization + solution time (Intel Xeon/2.33 GHz)

[ n. ] hm/hm | Method | CPU | RAM (LU/total) |
791,522 [ 0.00071/0.14020 | DG-P1 [ 3.0 sec [ 50 MB/ 179 MB
2,402,104 - DG-P, | 13.4sec | 149 MB/ 463 MB
6,543,232 - DG-P; | 99.6 sec | 366 MB/ 964 MB
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Domain decomposition solver

Formulation in the continuous case

Time harmonic Maxwell system

LW = iwGW + G, W + G,0,W + G,9,W = 0

@ Flux matrices
G = [ O3 N ] for | =x,y,z and with N, = —N,
@ Property : for any n = f(ny, ny, n;z) with || n ||=1,

C(n) = Gy ' (nGy + n,G, + n,G,) is diagonalizable

Eigenvalues : Ajp=—c, A34 =0, A5 = c with c =

3|
=
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Domain decomposition solver

Formulation in the continuous case

Schwarz algorithm

Ns
o Q=] W =W,
j=1

o [ =T, (for the presentation)
@ Overlapping subdomains

LW/PHL =0 in Q;
B,,J.,va"“ = B,,j,W’vp on Fj, = 6(21 n Q/
Gn_Wj’pJ'_1 = Gn_Winc on QJ' nr,

A\

Classical (natural) interface conditions

B =G,

G W <= nxE+2znx(nxH) (impedance condition)
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Domain decomposition solver

Convergence analysis (2D case) in the non-conductive case
@ Two subdomain case and = R?
Qy =] — 00, b[xR and Q; =a,+oo[xR with a<b

fol} Qo>

Dy oy

I Iz
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Domain decomposition solver

Convergence analysis (2D case) in the non-conductive case

@ V. Dolean, M.J. Gander and L. Gerardo-Giorda, SISC, to appear (2009)
o Fourier analysis

EP(x, k) = F(E1P) = / e R EIP(x, y) dy
R

with &P = WP — U where U = T~!W (characteristic variables)

Convergence rate

2 92
PR =R

Vk? —w? +iw
withd =b—a
WK ow si |k| <w (propagative modes)
—_ w
p(k,0) =q |Vw? -k +w

e—dVI=w? si |k| > w (evanescent modes)
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Domain decomposition solver

Convergence analysis (2D case) in the non-conductive case

Convergence rate as a function of the frequency parameter

Taux de convergence continu pour differentes tailles de recouvrement
T

1k EEEEE )
| o
J; o— 0= 0
i 0= fx
08 % & =
o I S = 28
=3
=]
8 o6l
@
2
2
z
8 pal
@
-
e
=5
el
=
0.2}
o4
0 10 20 30 40 50 60 70 80

Nombre d'onde adimensionne : k

S. Lanteri (INRIA, NACHOS




Domain decomposition resolution algorithms

Schwarz algorithm: algebraic formulation

@ Global system (two-sudomain case)

AL 0 R 0\ /wi fl
0 A 0 R||wWi|_|f
0 -B Id o ]| 0

~B, 0 0 Id) \ A 0

o Interface system: TpyAp = gp

Id BA'R, B,A; 1 F?
77.’ = and gh ==
BiATR Id BiATF!

o Schwarz iteration < Ay = (Id — 7) A2 + dp

o Accelerated iteration = Krylov method
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Domain decomposition resolution algorithms
3D application

Geometric models

@ Built from segmented medical images

@ Extraction of surfacic (triangular) meshes of the tissue interfaces
using specific tools
e Marching cubes + adaptive isotropic surface remeshing
e Delaunay refinement

@ Generation of tetrahedral meshes using a Delaunay/Voronoi tool
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Domain decomposition resolution algorithms

3D application

@ Plane wave exposure: F=1.8 GHz

@ Characteristics of the tetrahedral meshes

[ Mesh | # vertices | # tetrahedra [ Lin (mm) [ Lmax (mm) [ Lavg (mm) |

M1 188,101 1,118,952 9.04 23.86 9.09
M2 309,599 1,853,832 1.15 24.76 6.93

@ Solution methods

o Interface system
o BiCGstab(¢) (G.L.G. Sleijpen and D.R. Fokkema, ETNA, Vol.1, 1993)
o No preconditioner, £ = 6
o Local systems
@ Sparse direct solvers: MUMPS or PasTiX
o Mixed arithmetic strategy: LU in 32 bit + iterative refinement

@ Hardware platform

o Bull Novascale 3045 system of the CEA/CCRT center
(Centre de Calcul Recherche et Technologie)
o Intel Itanium 2/1.6 GHz, InfiniBand
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Domain decomposition resolution algorithms
3D application




Domain decomposition resolution algorithms

3D application: homogeneous propagation media

20 2 30

| Mesh | Method | #dof | N, [ #it| CPU (min/max) | Elapsed time |
| M1 | DGTH-P; | 26,854,848 | 160 | 24 | 1204 sec/1209 sec | 1210 sec |

| LU (min/max) | CPU factor (min/max) | Elapsed time factor |
| 21 GB/3.1GB | 493 sec/494 sec | 495 sec \
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Domain decomposition resolution algorithms

3D application: heterogeneous propagation media
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Domain decomposition resolution algorithms

3D application: heterogeneous propagation media

[ Mesh | Method | #dof [ N, [#it | CPU(min/max) [ Elapsed time |
M1 DGTH-P; | 26,854,848 | 160 | 30 1311 sec/1313 sec 1314 sec
- - - 320 | 36 525 sec/ 527 sec | 528 sec (2.5)
M2 DGTH-P;: | 44,491,968 | 256 | 42 | 1816 sec/1823 sec 1824 sec
- - - 512 | 49 782 sec/ 784 sec | 785 sec (2.3)
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Domain decomposition resolution algorithms

3D application: heterogeneous propagation media

" 160 sub
320 sub

256 sub”
512 b

il
°

esicu

Heration

[ Mesh [ N, [ LU (min/max) [ CPU factor (min/max) | Elapsed time factor |

M1 | 160 | 2.1 GB/3.1 GB 490 sec/495 sec 496 sec

- 320 | 0.8 GB/1.2 GB 130 sec/131 sec 132 sec (3.8)
M2 | 256 | 2.2 GB/3.2 GB 525 sec/527 sec 528 sec

- 512 | 0.8 GB/1.3 GB 138 sec/140 sec 142 sec (3.7)
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Closure

Future research directions

DGTH method

@ Non-conforming (both in h and p) DGTH method
@ hp-adaptivity

Solution methods

@ Schwarz algorithms based on optimized interface conditions
(in collaboration with M. Gander, University of Geneva)

@ Subdomain solver
o Block ILU preconditioned iterative solver
o Hierarchical solution strategies

A\

High performance computing

@ Hierarchical SPMD model (multiple parallelism levels)
@ DG method on hybrid CPU/GPU systems
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Closure

Thank you for your attention!
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