
Programming hierarchical multicore
systems using hybrid approaches:

a runtime’s perspective
Pr. Raymond Namyst

RUNTIME group

INRIA Bordeaux Research Center
University of Bordeaux 1

France

Bordeaux

•  We also have a long standing activity in parallelism…

Background

•  RUNTIME Team
–  High Performance Runtime Systems for Parallel Architectures

•  3 main research directions
–  Thread scheduling over shared memory machines

●  Application-guided, topology-aware thread scheduling
–  ForestGOMP/BubbleSched OpenMP, starPU

–  Communication over high speed networks

●  Fast, overlapped and reactive data transfers between machines

–  MPICH2/NEMESIS/NewMadeleine, Open-MX

–  Integration of multithreading and communication

Outline

•  Runtime systems for hybrid applications
–  How to program hierarchical clusters of multicore nodes?

•  Runtime systems for heterogeneous machines
–  How to schedule tasks over a heterogeneous set of computing units?

•  Challenges for the upcoming years

Runtime systems for
hybrid applications

Multicore is a solid
architecture trend

•  Multicore chips
–  Different from SMPs

●  Hierarchical machines
●  Complex topology

–  Back to the CC-NUMA era?

•  Clusters of multicore
nodes

–  One more hierarchical level
–  Programmers are probably

more confident with the
“distributed” part…

Can we escape
the pure MPI model?

•  MPI is the most popular parallel programming interface
–  Its programming model has been widely accepted

–  Existing implementation are very efficient

–  Scalability is OK so far

•  But the “pure, flat MPI” model raises several issues
–  Topology-aware applications

●  Concurrent point-to-point communications can generate bottlenecks

●  No convenient abstraction to develop portable, topology-aware applications

–  Load balancing
●  Each MPI process is usually bound to a single core

●  Load balancing policy can hardly be implemented independently

What programming model for
clusters of multicore machines?

•  I wish it would be XcalableMP 3.0, UPC 4.0 or Charm++ 8.0!
–  Uniform programming model

●  Scheduling / Load balancing

●  Communication

●  Synchronization

–  Fine-grain, structured parallelism!

•  However
–  The world is actually full of natural born MPI programmers

–  MPI has proved to be very efficient on clusters

•  The number of hybrid applications will probably increase in the
future

Hybrid applications

•  MPI + OpenMP is the most popular approach
–  OpenMP directives are typically inserted in existing MPI programs

•  We believe that “indirect hybridization” is even more interesting
–  Parallel Libraries

●  MPI programs using MKL or PLASMA…

–  Big challenge = composability!
●  MPI + OpenMP + TBB + multicore BLAS…

•  Mixing programming models raises a lot of issues
–  Semantics issues

●  MPI_recv inside parallel sections?
–  Technical issues

●  nested locks, user-space vs kernel space scheduling

–  Performance issues

●  thread/process distribution

Designing a runtime system for
hybrid programs

•  Goals
–  Solve technical/performance issues

●  Ever tried to mix MKL and OpenMP?

–  Experiment and find the most adequate core assignment tradeoff

●  Process/thread/task ratio

SWITCH

Our background: Thread Scheduling
over Multicore Machines

•  The Bubble Scheduling concept
–  Capturing application’s structure with

nested bubbles

–  Scheduling = dynamic mapping trees of
threads onto a tree of cores

•  The BubbleSched platform
–  Designing portable NUMA-aware

scheduling policies
●  Focus on algorithmic issues

–  Debugging/tuning scheduling
algorithms

●  FxT tracing toolkit + replay animation

●  [with Univ. New Hampshire, USA]

BubbleSched

Operating System

CPU CPU CPU CPU

Mem Mem

Our background: Thread Scheduling
over Multicore Machines

•  Designing multicore-friendly programs
with OpenMP

–  Parallel sections generate bubbles

–  Nested parallelism is welcome!
●  Lazy creation of threads

•  The ForestGOMP platform
–  Extension of GNU OpenMP

●  Binary compliant with existing applications

–  Excellent speedups with irregular
applications

●  Implicit 3D surface reconstruction [with iParla]

●  Tree depth > 15, more than 300,000 threads

void Node::compute(){

 // approximate surface

 computeApprox();

 if(_error > _max_error) {

 // precision not sufficient

 // so divide and conquer

 splitCell();

 #pragma omp parallel for

 for(int i=0; i<8; i++)

 _children[i]->compute();

 }

}

GNU OpenMP binary

libgomp

pthreads

Threads GOMP
Bubble-
Sched

GOMP Interface

Our ForestGOMP/MPICH
Runtime

•  Experimental platform for hybrid
applications

–  Topology-aware process
allocation

–  Customizable core/process
ratio

–  # of OpenMP tasks
independent from # of cores

●  OMP_NUM_THREADS ignored

–  Traces can be generated and
analyzed offline

0
10
20
30
40
50
60

BT-MZ.C.32 SP-MZ.C.32
Ex

ec
ut

io
n

tim
e

(s
ec

on
ds

) Impact of Thread distribution

Optimum
Worst
Default

0

20

40

60

80

64 32 16 8

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Number of MPI processes

Impact of thread/process ratio

Ongoing work

•  Extending the platform to other programming environments
–  Intel TBB

–  StarPU

•  Providing performance feedback to the programmer
–  Can we still understand performance?

•  Allowing the user to give scheduling hints
–  Composability of hints? 

Designing Runtime Systems
for Heterogenenous

Architectures

Parallel machines are going
heterogeneous

•  GPGPU are the new kids on
the block

–  Very powerful SIMD
accelerators

–  Successfully used for
offloading data-parallel
kernels

•  Some chips already feature
specialized hardware

–  IBM Cell/BE
●  1 PPU + 8 SPUs

–  Intel Larrabee
●  48-core with SIMD units

Parallel machines are going
heterogeneous

•  Programming model
–  Specialized instruction set
–  SIMD execution model

•  Memory
–  Size limitations
–  No hardware consistency

●  Explicit data transfers

•  Are we happy with that?
–  No, but it’s a clear trend!

Mixed Large
and

Small Core

Dealing with heterogenenous
accelerators

•  Specific APIs
–  CUDA, IBM SDK, …
–  No consensus

●  Specialized languages/
compilers

–  OpenCL?

•  Communication libraries
–  MCAPI, MPI

M.

CPU

CPU

CPU

CPU M. *PU

M. *PU

Accelerators

ALF
CUDA

MCF

FireStream
Cg

Dealing with heterogenenous
accelerators

•  Language extensions
–  RapidMind, Sieve C++
–  HMPP

#pragma hmpp target=cuda

–  Cell Superscalar
#pragma css input(..) output(…)

•  Most approaches focus on
offloading

–  As opposed to scheduling M.

CPU

CPU

CPU

CPU M. *PU

M. *PU

Accelerators

ALF
CUDA

MCF

FireStream
Cg

Programming
Hybrid Architectures

•  Challenge = exploiting all
computing units
simultaneously

•  Either use a hybrid
programming model

–  E.g. OpenMP + HMPP +
Intel TBB + CUBLAS + MKL
+ …

•  Or use a uniform
programming model

–  That doesn’t exist yet…

M.

CPU

CPU

CPU

CPU M. *PU

M. *PU

Multicore

OpenMP
TBB

Accelerators

MPI Cilk ?

ALF
CUDA

MCF

FireStream
Cg ?

In either case,
a common runtime
system is needed!

Towards a unified
execution model

•  We wanted our runtime to
fulfill the following
requirements:

–  Dynamically schedule tasks
on all processing units

●  See a pool of
heterogeneous cores

–  Avoid unnecessary data
transfers between
accelerators

●  Need to keep track of data
copies

A = A+B

M.

CPU

CPU

CPU

CPU M. GPU

M. GPU

CPU

CPU

CPU

CPU
SPU SPU

SPU SPU

SPU

SPU

M.
A

A

B
B

The StarPU Runtime System

High-level data management

Common driver interface (CUDA/Nvidia, Gordon/Cell)

OS / Vendor specific interfaces

Scheduling engine

Compilers, libraries

Mastering CPUs, GPUs, SPUs ...
 (hence the name: *PU)

High-Level Data Management

•  All we need is a Software DSM
system!

–  Consistency, replication,
migration

–  Concurrency, accelerator to
accelerator transfers

–  Memory reclaiming mechanism
●  Problem size > accelerator size

•  Data partitioned with filters
–  Various interfaces

●  BLAS, vector, CSR, CSC

–  Recursively applied
●  Structured data = tree

4,2,2,2,3

Scheduling Engine

•  Tasks are manipulated through
“codelet wrappers”

–  May provide multiple
implementations

●  Scheduling hints
–  Optional cost model per

implementation, priority, …

–  List data dependencies
●  Using the filter interface

–  Maybe automatically generated

•  Schedulers are plug-ins
–  Assign tasks to run queues

–  Dependencies and data
prefetching are hidden

CPU
code

GPU
code

SPU
code

Codelet wrapper

Implementations

Input Data

Output Data

Callback

Evaluation
Blocked matrix multiplication

 Exploit heterogeneous platform

–  4 CPUs + 1 GPU

 CPUs must not be neglected!

  Issues with 4 CPUs + 1 GPU

–  Busy CPU delays GPU management

–  Cache-sensitive CPU code

•  Trade-off : dedicate one core

quadcore Intel Xeon
+ nVidia Quadro FX4600

G
Fl

op
s

Dedicate one CPU

• 

Evaluation
About the importance of performance models

Modeling workers' performance
 - “1 GPU = 10x faster than 1

CPU”
 - Reduce load imbalance
 - Fuzzy approximation

Modeling tasks execution time
 - Precise performance models
 - “mathematical” models
 - user-provided models

 - automatic “learning” for
 unknown codelets

What did we learn?

•  All computing units must be used simultaneously to achieve
high performance

–  “Pure offloading” is not sufficient

•  Performance models and scheduling policies have a high
impact on performance

–  The scheduling platform must be open

•  Finding the best task granularity is very difficult
–  Has to be decided dynamically!

What did we learn?

•  Programmers (usually)
know their application

–  Don't guess what we know!
–  Scheduling hints

•  Feedback is important
–  E.g. Performance counters
–  Adaptive applications?

•  Other Issues
–  Can we still find a unified

execution model?
–  How to determine the

appropriate task granularity?

Compiling
environment

HPC Applications

Runtime system

Operating System

Hardware

Specific
libraries

Expressive interface

Execution Feedback

Challenges for the
upcoming years

•  Integrate more than just two programming models
–  We can’t seriously consider codeletizing the world…

–  E.g. support execution of MPI + OpenMP + StarPU programs

•  Provide an open scheduling framework
–  Adaptive, portable scheduling/optimization strategies

–  Using hardware feedback to refine/correct scheduling directives

•  Enhance cooperation between runtime systems and compilers
–  Runtime support for “divisible tasks”

•  Understanding performance, debugging

Challenges for the
upcoming years

•  The main challenge is composability
–  Future application will be composed of several types of bricks

Unified Multicore Runtime System

Topology-aware
Scheduling

Memory
Management Synchronization

Task Management
(Threads/Tasklets/Codelets)

Data distribution
facilities I/O services

OpenMP Intel TBB HMPP

MKL PLASMA

MPI
implementations

Thank you!

•  More information about Runtime

http://runtime.bordeaux.inria.fr

•  More information about StarPU and ForestGOMP

http://runtime.bordeaux.inria.fr/starpu
http://runtime.bordeaux.inria.fr/forestgomp

•  Software available on INRIA Gforge:

http://gforge.inria.fr/projects/pm2/

