Hybrid Parallelism on "real" applications and simulations

<u>Jean-François Méhaut</u> Université Joseph Fourier/LIG/INRIA/Mescal

With A. Carissimi, L. Fernandes, T. Deutsch, L. Genovese, M. Ospici M. Castro, C. Pousa, F. Dupros, H. Aochi, D. Komatitsch

Outline of Presentation

- Introduction
 - General description of « real » applications
- Simulations for nanosciences
 - Ab initio methods
 - BigDFT code
 - Hybrid clusters
- Seismic simulations
 - Wave propagation
 - Memory Affinity

Introduction

Introduction (1)

- « Real » applications
 - Societal and industrial impact
 - Geosciences
 - Nanotechnology
 - -
- Multidisciplinarity
 - Physics, Chemistry, Geophysics, ...
 - Applied Mathematics
 - Computer Science
- Regional, National and International Projects

Introduction (2)

- « Real » Applications
 - Old Fashion Software
 - Algorithms
 - Programming Languages (Fortran,...)
 - Intensive computations
 - Huge volume of data
 - Input : storing data in memory
 - Output : Analysis, data mining, visualization...
- Need to anticipate for the using of new and future computing platforms
 - Multicore, GPU, accelerator
 - Memory hierarchy
 - Minimizing the software intrusion!

Simulations for nanosciences and nanotechnologies

Basic components in nanosciences

• Molecules :

Nanocrystal :

 Nanotubes of carbon, nanowires

ab initio methods

- Density Functional Theory (DFT)
 - Computing the total energy of a solid or a molecule in its fundamental state (Hohenber & Kohn 1964)
 - Soliving the Schrodinger equation

$$-\frac{1}{2m}\nabla^2\psi(\mathbf{r}) + V_{\text{ions}}(\mathbf{r})\psi(\mathbf{r}) + V_{\text{hxc}}[\psi](\mathbf{r})\psi(\mathbf{r}) = \varepsilon\psi(\mathbf{r})$$

For each electron of system, a wave function ψ Is applied

Intensive computations:

- From 10 to 1 000 atoms
- 40 à 10000 wave functions

Adaptive mesh

Molecule with 44 atoms and its adaptive mesh

Automaticaly adjust the wave function depending of the properties to study

A basis for nanosciences The BigDFT Project

- STREP European Project: BigDFT (2005-2008)
 - 4 partners, 20 contributors
 - CEA-INAC Grenoble, U. Basel, U. Louvain-la-Neuve, U. Kiel
- Aim: to develop an ab inito code DFT based on Daubechies Wavelets, to be integrated in AB INIT distributed freely to the scientific community
 - http://www.abinit.org
- Result:
 - The BigDFT code is fully operational, stable and robust with excellent performance

Already in use with several applications

BigDFT performance on homogeneous clusters

BigDFT and hybrid clusters

- Hybrid clusters (CINES, GENCI-CEA)
 - Nodes with Intel processors (2 x 4 cores) and GPU (Nvidia Tesla S1070)
 - Infiniband network
- BigDFT code
 - Fortran code, MPI
 - CUDA
 - S_GPU: Sharing GPUs between many CPU cores
 - Overlap Memory Transferts
 - Wavelet: convolution products executed on GPU
- Preliminar results
 - Around 7 faster with GPUs and Intel Xeon (CINES)
 - Around 4 faster with GPUs and Intel Nehalem (GENCI-CEA)

ProHMPT project

- BuLL: French Computer Manufacturer
 - Hybrid cluster
- CAPS Entreprise:
 - Hybrid Multicore Parallel Programming
- CEA: Atomic Research Institute
 - INAC (Nanosciences institute)
 - DAM/CESTA (Military division)
- UVSQ: University of Versailles
- INRIA: Computer Science Research
 - Runtime-Bordeaux, Mescal-Grenoble

Seismic Simulations

Goals

- Simulate earthquakes on clusters of NUMA and multi-core nodes
- Improve SelSmic models, define new case tests
- Increase the performance of systems and runtime of NUMA machines (multithreading, memory affinity)
- Goal: A better understanding of earthquakes and increasing of simulation power
- NUMASIS: A multidisciplinary project
 - Geophysician (models of wave propagation)
 - Computer Science (operating system and runtimes, numerical algorithmic))

A Consortium

- BuLL: French Computer Manufacturer
 - NUMA Architecture: Novascale

- BRGM: Geoscience Institute
 - Sismic application (ONDES3D)

- TOTAL: Oil and gas exploration
 - Knowledge of geological layers

- INRIA: Computer Science Research
 - Magique3D, ScAlApplix, Runtime, Mescal, Paris

Earthquake Hazard Assessment

Use parallel computing to simulate earthquakes

Learn about structure of the Earth based upon seismic waves (tomography)

Produce seismic hazard maps (local/regional scale) e.g. Los Angeles, Tokyo, Nice, Grenoble

20,000 people killed 167,000 injured ≈ 339,000 <u>buildings</u> destroyed 783,000 <u>buildings</u> damaged

Different scales for the simulation and observation of seismic phenomena

Ingredients for a Seismic Hazard Calculation

NUMASIS applications

- ONDES3D (BRGM, Ecole Centrale de Paris)
 - OpenMP
 - MPI
 - Hybrid : OpenMP + MPI
- PRODIF (CEA, TOTAL)
- SPECFEM3D (Magique3D, Caltech)
 http://www.gps.caltech.edu/~jtromp/research/downloads.html

Stencil computation

Free surface condition

Absorbing Conditions

Physical domain

For i=1,Nx
For j=1,Ny
For k=1,Nz
init()

For i=1,Nx
For j=1,Ny
For k=1,Nz
compute_velocity()

For i=1,Nx
For j=1,Ny
For k=1,Nz
compute_stress()

ONDES3D: Memory mapping and multithreading scheduling

Exploit first-touch linux strategy with OpenMP?

Strong link between initialization (allocation) phase and execution phase. Replay the same mapping of threads

Memory migration ?

Performance depend on the dynamical behavior of the application

Flexible memory policies : MAI library (INRIA Mescal)

Application requirement

Need for dynamic thread scheduling strategy to consider load-balancing at the shared memory level

ONDES3D: Results with Marcel/PM2 and MAI

Balanced situation - physical domain

<u>Unbalanced situation – Complete simulation</u>

- Gain relative to OpenMP regular and irregular memory pattern and FT memory policy
- ■More 1000 threads on 16 cores for the irregular PM2 version
- Importance of the size of the problem and the thread scheduling to choose the best memory policy on NUMA architecture.

Memory Affinity Interface (MAi)

 A user-level interface to control memory affinity on NUMAs

- Memory Policies:
 - bind all
 - bind_block
 - cyclic
 - cyclic_block
 - •

MAi (Memory Affinity Interface)

bind_all policy

 bind_block policy

MAi (Memory Affinity Interface)

cyclic policy

cyclic_block policy

block size = 2 memory pages

MAi (Memory Affinity Interface)

```
absolute_matrix = mai_alloc(Nx,Ny,sizeof(double));
resitave matrix = mai alloc(Nx,Ny,sizeof(double));
mail bind all(absolute matrix);
mai bind all(relative matrix);
#pragma omp parallel for
for(....)
 for(...)
   compute(relative matrix);
```

ONDES3D: Results with Marcel/PM2 and MAi

Balanced situation - physical domain

<u>Unbalanced situation – Complete simulation</u>

- Gain relative to OpenMP regular and irregular memory pattern and FT memory policy
- ■More 1000 threads on 16 cores for the irregular PM2 version
- Importance of the size of the problem and the thread scheduling to choose the best memory policy on NUMA architecture.