
Comunication Optimal Algorithms for
Numerical Linear Algebra

Laura Grigori
INRIA Saclay – Ile de France

June 11, 2009

Joint work with J. Demmel, M. Hoemmen (UC Berkeley), J.
Langou (CU Denver), and H. Xiang (Paris 6)

Page 2

Plan

• Research context

• Communication-optimal operations for linear algebra, first
results in dense LU and QR factorizations

• Conclusions and future work

Page 3

Motivation and challenges
• Running time of an algorithm is sum of 3 terms:

• # flops * time_per_flop
• # words moved / bandwidth
• # messages * latency

• Exponentially growing gaps between
• Time_per_flop << 1/Network BW << Network Latency

• Improving 59%/year vs 26%/year vs 15%/year
• Time_per_flop << 1/Memory BW << Memory Latency

• Improving 59%/year vs 23%/year vs 5.5%/year
• Goal : reorganize linear algebra to avoid communication

• Not just hiding communication
• Arbitrary speedups possible

Page 4

Communication Lower Bounds for
 Dense Linear Algebra – Summary of theory

• Matrix multiply, using 2n3 flops (sequential or parallel)
• Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
• Lower bound on Bandwidth = Ω (#flops / (local/fast memory size)1/2)
• Lower bound on Latency = Ω (#flops / (local/fast memory size)3/2)
• Attained by usual block algorithm (sequential), Cannon (parallel)

• Same lower bounds apply to LU, QR and Cholesky
• Assumption: O(n3) algorithms; LU is easy, Cholesky trickier, QR subtle

• LAPACK and ScaLAPACK do not attain these bounds for LU, QR
• ScaLAPACK attains bandwidth lower bound

– But sends O((mn/P)1/2) times more messages
• LAPACK attains neither; O((m2/W)1/2) times more bandwidth

• But new LU, QR do attain them, mod polylog factors
• LU requires a new pivoting scheme, still stable
• QR requires new representation of Q, O(n2) more flops
• Sequential Recursive LU and QR minimize bandwidth, not latency

– Cholesky: ScaLAPACK attains lower bounds, LAPACK just
bandwidth

– Joint work with G. Ballard, J. Demmel, L. Grigori, M. Hoemmen, O. Holtz, J. Langou, O.
Schwartz

Courtesy of J. Demmel

Page 5

Lower Bounds on Communication for parallel LU

• Matrix multiplication lower bounds on communication
bandwidth (Hong,Kung 1981, Irony/Toledo/Tishkin, 2004) extended
to provide latency bounds:

 - each processor has memory

• Bounds hold for LU using a simple example:

!

#words " #
n
2

P

$

%
&

'

(
)

!

#messages " # P()

!

I "B

A I

I

$

%
%
%

&

'

(
(
(

=

I

A I

I

$

%
%
%

&

'

(
(
(
.

I "B

I AB

I

$

%
%
%

&

'

(
(
(

!

O(n
2
/P)

Page 6

LU factorization (as in ScaLAPACK pdgetrf)
LU factorization on a Pr by Pc grid of processors
For ib = 1 to n-1 step b
 A(ib) = A(ib:n, ib:n)

 (1) Compute panel factorization (pdgetf2)
 - find pivot in each column, swap rows

 (2) Apply all row permutations (pdlaswp)
 - broadcast pivot information along the rows
 - swap rows at left and right

(3) Compute block row of U (pdtrsm)
 - broadcast right diagonal block of L of current panel

 (4) Update trailing matrix (pdgemm)
 - broadcast right block column of L
 - broadcast down block row of U

L

U

A(ib)

L

U

A(ib+b)

L

U

A(ib)

L

U

A(ib)

)log(2 r
PnO

)log/(2 c
PbnO

))log(log/(22 rc
PPbnO +

))log(log/(22 rc
PPbnO +

Page 7

TSQR: an approach for QR factorization of a tall skinny matrix
using Householder transformations

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02

• QR decomposition of m x n matrix W, m >> n
• TSQR = “Tall Skinny QR”
• P processors, block row layout

• Usual Parallel Algorithm
• Compute Householder vector for each column
• Number of messages ∝ n log P

• Communication Avoiding Algorithm
• Reduction operation, with QR as operator
• Number of messages ∝ log P

• Joint work with J. Demmel, M. Hoemmen, J. Langou

Page 8

Parallel TSQR

QR

 R00V00`W0

R10V10W1

R20V20W2

R30V30W3

R00
R10

V01 R01

R20
R30

V11 R11

time

P0

P1

P2

P3

V02 R02R01
R11

QR

QR

QR

QR

QR

QR

Page 9

Minimizing Communication in TSQR

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02Parallel:

W =
W0
W1
W2
W3

R01 R02

R00

R03
Sequential:

W =
W0
W1
W2
W3

R00
R01

R01

R11
R02

R11

R03

Dual Core:

Choose reduction tree dynamically
Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?

Page 10

Obvious generalization of TSQR to LU

LU

 U00L00`W0

U10L10W1

U20L20W2

U30L30W3

U00
U10

L01 U01

U20
U30

L11 U11

time

P0

P1

P2

P3

L02 U02U01
U11

!

"
10

!

"
00

!

"
20

!

"
30

!

"
01

!

"
11

!

"
02

LU

LU

LU

LU

LU LU

Page 11

Stability of the LU factorization
• Consider the growth factor

 where are the values at the k-th step.

• Experiments performed for various distribution of matrices with n < 1024 [Trefethen and
Schreiber ’90] showed that the average growth factor normalized by the standard deviation
of the initial matrix elements is:

 - close to n2/3 for partial pivoting, n1/2 for complete pivoting.

• Two reasons considered to be important for the average case stability:

 - the multipliers in L are small,

 - the correction introduced at each elimination step is of rank 1.

Other strategies:

 - pairwise pivoting considered reasonably stable (low rank correction).

 - TSLU involves a rank-P update at each step.

ijji

k

ijkji

a

a

,

,,

max

max
=!)(k

ija

Page 12

Growth factor for TSLU based factorization

• Unstable for large P and large matrices.

• When P equals the number of rows, TSLU is equivalent to parallel pivoting.

Courtesy of H. Xiang

Page 13

Making TSLU stable - preprocessing step to find good pivots

time

P0

P1

P2

P3

!

2 4

0 1

2 0

1 2

"

$
$
$
$

%

&

'
'
'
'

=(
0
L
0
U
0

!

2 0

0 0

4 1

1 0

"

$
$
$
$

%

&

'
'
'
'

=(
1
L
1
U
1

!

0 1

1 4

0 0

0 2

"

$
$
$
$

%

&

'
'
'
'

=(
2
L
2
U
2

!

2 1

0 2

1 0

4 2

"

$
$
$
$

%

&

'
'
'
'

=(
3
L
3
U
3

!

2 4

2 0

"

$

%

&
'

!

4 1

2 0

"

$

%

&
'

!

1 4

0 2

"

$

%

&
'

!

4 2

0 2

"

$

%

&
'

!

2 4

2 0

4 1

2 0

"

$
$
$
$

%

&

'
'
'
'

=(0L
0
U
0

!

1 4

0 2

4 2

0 2

"

$
$
$
$

%

&

'
'
'
'

=(2L2U 2

!

4 1

2 4

"

$

%

&
'

!

4 2

1 4

"

$

%

&
'

!

4 1

2 4

4 2

1 4

"

$
$
$
$

%

&

'
'
'
'

=(
0
L
0
U
0

!

4 1

1 4

"

$

%

&
'

!

W
0

!

"
0

T
W

0

!

W
0

!

"0

T

W 0

!

W
0

!

"
0

T

W
0

!

W
1

!

"
1

T
W
1

!

W
2

!

"
2

T
W

2

!

W
2

!

"2

T

W 2

!

W
3

!

"
3

T
W

3

Good pivots for
factorizing W

Page 14

Making TSLU stable - the overall idea
• At each node in tree, TSLU selects b pivot rows from

2b candidates from its 2 child nodes
• At each node, do LU on 2b original rows selected by

child nodes, not U factors from child nodes
• When TSLU done, permute b selected rows to top of

original matrix, redo b steps of LU without pivoting

• CALU – Communication Avoiding LU for general A
• Use TSLU for panel factorizations
• Apply to rest of matrix
• Cost: redundant panel factorizations

• Benefit:
• Stable in practice, but not same pivot choice as GEPP
• b times fewer messages overall - faster

• Joint work with J. Demmel, H. Xiang

Page 15

Growth factor for CALU approach

Like threshold pivoting with worst case threshold = .33 , so |L| <= 3
Testing shows about same residual as GEPP

Page 16

Stability of CALU
• Consider the m-by-n matrix W, where W1 and W3 are b-by-b, and

suppose the permutation returned by TSLU is the identity.

• After the factorization of first panel by CALU, (the Schur
complement of W8) is not bounded as in GEPP, but:

• Pivot growth is no worse than PP applied to a different matrix
whose entries are the same as the entries of the original matrix.

!

W =

W
1

W
5

W
2

W
6

W
3

W
7

W
4

W
8

"

$
$
$
$

%

&

'
'
'
'

W1
W2
W3
W4

W1

W3

W1TSLU:

!

W
1

W
1

W
5

W
3

W
3

W
7

W
3

2W
3

W
7

"W
4

"W
8

$

%
%
%
%

&

'

(
(
(
(

=
)
L)

I
3b

I
n"b

"W
8

s

$
%

&

'
()

)
U !

W
8

s

Page 17

CALU – a communication avoiding LU factorization
• Consider a 2D grid of P processors Pr-by-Pc , using a 2D block cyclic layout with square blocks of size b.

For ib = 1 to n-1 step b
 A(ib) = A(ib:n, ib:n)

 (1) Find permutation for current panel using TSLU

 (2) Apply all row permutations (pdlaswp)
 - broadcast pivot information along the rows of the grid

 (3) Compute panel factorization (dtrsm)

 (4) Compute block row of U (pdtrsm)
 - broadcast right diagonal part of L of current panel

 (5) Update trailing matrix (pdgemm)
 - broadcast right block column of L
 - broadcast down block row of U

L

U

A(ib)

L

U

A(ib+b)

L

U

A(ib)

L

U

A(ib)

)log/(2 r
PbnO

)log/(2 c
PbnO

))log(log/(22 rc
PPbnO +

))log(log/(22 rc
PPbnO +

Page 18

LU for General Matrices

• Cost of CALU vs ScaLAPACK’s PDGETRF
• n x n matrix on P1/2 x P1/2 processor grid, block size b
• Flops: (2/3)n3/P + (3/2)n2b / P1/2 vs (2/3)n3/P + n2b/P1/2

• Bandwidth: n2 log P/P1/2 vs same
• Latency: 3 n log P / b vs 1.5 n log P+ 3.5n logP / b

• Close to optimal (modulo log P factors)
• Assume: O(n2/P) memory/processor, O(n3) algorithm,
• Choose b near n / P1/2 (its upper bound)
• Bandwidth lower bound: Ω(n2 /P1/2) – just log(P) smaller
• Latency lower bound: Ω(P1/2) – just polylog(P) smaller

Page 19

Evaluation of the performance

• Experiments performed on two platforms at NERSC:

 IBM p575 POWER 5 system, 111 compute nodes, 8 processors per node
 - each processor is clocked at 1.9 GHz, theoretical peak of 7.6 GFLOPs/sec.

 - each node has 32 GB memory.

 - MPI Point to Point internode Latency is 5 usec.

 - peak Bandwidth is 3100 MB/sec.

 Opteron cluster with 356 dual-processor nodes
 - each node has 6 GB memory

 - each processor is clocked at 2.2 GHz, theoretical peak of 4.4 GFLOPs/sec.

 - Switch MPI Unidirectional Latency is 4.5 usec.

 - peak Switch MPI Unidirectional Bandwidth is 620 MB/sec.

Page 20

Performance vs ScaLAPACK
• TSQR

• Pentium III cluster, Dolphin Interconnect, MPICH
• Up to 6.7x speedup (16 procs, 100K x 200)

• BlueGene/L - Up to 4x speedup (32 procs, 1M x 50)
• TSLU

• IBM Power 5 - Up to 4.37x faster (16 procs, 1M x 150)
• Cray XT4 - Up to 5.52x faster (8 procs, 1M x 150)

• CALU
• IBM Power 5 - Up to 2.29x faster (64 procs, 1000 x 1000)
• Cray XT4 - Up to 1.81x faster (64 procs, 1000 x 1000)

• All use recursive algorithms (Toledo, Elmroth-Gustavson)
locally.

Page 21

 Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.

Speedup prediction for a Petascale machine - up to 81x

./102,10,102
9512
wordsss

!!! "=="= #$%

P = 8192

Page 22

Conclusions

• Possible to minimize communication complexity of much
dense and sparse linear algebra
• Practical speedups
• Approaching theoretical lower bounds

• The new algorithms minimize the number of messages
exchanged at the cost of some redundant computation.

• Recent work extends the bounds to sparse matrix
multiplication and sparse direct factorizations.

Page 23

Conclusions

• Lots of prior work, some recent work
• Idea of binary reduction tree for parallel QR previously studied by

• Golub, Plemmons, Sameh 1988 - first to suggest the idea
• Pothen, Raghavan, 1989 - implement it using logP messages

• Flat trees algorithms, called tiled algorithms used in the context of
• Out of core - Gunter, van de Geijn 2005
• Multicore, Cell processors - Buttari, Langou, Kurzak and Dongarra

(2007, 2008), Quintana-Orti, Quintana-Orti, Chan, van Zee, van de
Geijn (2007,2008).

• And some ideas are new
• Parallel CAQR, CALU
• Bounds on communication

Page 24

Future Work

• Many open problems

• Automatic tuning - choose the right communication
pattern/tree.

• Extend optimality proofs to general architectures
• Which preconditioners work?

