Comunication Optimal Algorithms for
Numerical Linear Algebra

Laura Grigori
INRIA Saclay — lle de France

June 11, 2009

Joint work with J. Demmel, M. Hoemmen (UC Berkeley), J.
Langou (CU Denver), and H. Xiang (Paris 6)

Plan

Research context

Communication-optimal operations for linear algebra, first
results in dense LU and QR factorizations

Conclusions and future work

Page 2

Motivation and challenges

* Running time of an algorithm is sum of 3 terms:
« #flops * time per flop
 # words moved / bandwidth
 # messages * latency
* Exponentially growing gaps between
« Time_per_flop << 1/Network BW << Network Latency
 Improving 59%l/year vs 26%l/year vs 15%lyear
« Time_per_flop << 1/Memory BW << Memory Latency
* Improving 59%l/year vs 23%l/year vs 5.5%lyear
« (Goal : reorganize linear algebra to avoid communication
* Not just hiding communication
* Arbitrary speedups possible

Page 3

Communication Lower Bounds for
Dense Linear Algebra — Summary of theory

Matrix multiply, using 2n3 flops (sequential or parallel)
* Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
« Lower bound on Bandwidth = Q (#flops / (local/fast memory size)'?)
- Lower bound on Latency = Q (#flops / (local/fast memory size)*?)
 Attained by usual block algorithm (sequential), Cannon (parallel)

Same lower bounds apply to LU, QR and Cholesky
- Assumption: O(n3) algorithms; LU is easy, Cholesky trickier, QR subtle

LAPACK and ScalLAPACK do not attain these bounds for LU, QR
« ScalLAPACK attains bandwidth lower bound
— But sends O((mn/P)"2) times more messages
- LAPACK attains neither; O((m2/W)"2) times more bandwidth

But new LU, QR do attain them, mod polylog factors
« LU requires a new pivoting scheme, still stable
* QR requires new representation of Q, O(n?) more flops
« Sequential Recursive LU and QR minimize bandwidth, not latency

Cholesky: ScaLAPACK attains lower bounds, LAPACK just

bandwidth

Joint work with G. Ballard, J. Demmel, L. Grigori, M. Hoemmen, O. Holtz, J. Langou, O.
Schwartz

Courtesy of J. Demmel Page 4

Lower Bounds on Communication for parallel LU

« Matrix multiplication lower bounds on communication
bandwidth (Hong,Kung 1981, Irony/Toledo/Tishkin, 2004) extended
to provide latency bounds:

- each processor has O(n” / P) memory

2
#words = Q(n_) # messages = Q(\/F)

VP

« Bounds hold for LU using a simple example:

Page 5

LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a Pr by Pc grid of processors
Forib=1ton-1stepb
Alb) = A(ib:n, ib:n)

(1) Compute panel factorization (pdgetf2) O(n 10g2 Pr)
- find pivot in each column, swap rows

(2) Apply all row permutations (pdlaswp) 0(n/b(10g2 Pc + 10g2 pr)) ,
- broadcast pivot information along the rows

- swap rows at left and right

(3) Compute block row of U (pdtrsm) O(n/blog, P,)
- broadcast right diagonal block of L of current panel

(4) Update trailing matrix (pdgemm) 0(n/b(10g2 P4 10g2 P)) “
- broadcast right block column of L ¢ :
- broadcast down block row of U

Page 6

TSQR: an approach for QR factorization of a tall skinny matrix
using Householder transformations

* QR decomposition of m x n matrix W, m >>n
« TSQR = “Tall Skinny QR”
* P processors, block row layout
» Usual Parallel Algorithm
« Compute Householder vector for each column
* Number of messages « nlog P
« Communication Avoiding Algorithm
* Reduction operation, with QR as operator
* Number of messages « log P

Wo | > | Ro| 2R
W= W1 _» R1O Y o1 \ n
- R B / 02
wz > R20 _» Ry
ALE L R3p-

* Joint work with J. Demmel, M. Hoemmen, J. Langou
Page 7

Parallel TSQR

Page 8

time

Minimizing Communication in TSQR

Wo | > Row 3R
¥ Rpq
Parallel: w=| W, | ™ Ry T Ros
- W R3p

Sequential:w=| W, | /" ~ YT R
q w, 02\>R03

W, |
W, | > Re —
R
Dual Core:w=| W, | > Ry —>"9""= g _
W = Ry TR
2 ___sMo3
- W - Ri

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?
Choose reduction tree dynamically Page 9

Obvious generalization of TSQR to LU

Page 10

time

Stability of the LU factorization

« Consider the growth factor

k

max. ij

i,j.k a

o = where a;.k) are the values at the k-th step.

a,

max, ;

* Experiments performed for various distribution of matrices with n < 1024 [Trefethen and
Schreiber '90] showed that the average growth factor normalized by the standard deviation
of the initial matrix elements is:

- close to n?3 for partial pivoting, n'2 for complete pivoting.

« Two reasons considered to be important for the average case stability:
- the multipliers in L are small,

- the correction introduced at each elimination step is of rank 1.

Other strategies:
- pairwise pivoting considered reasonably stable (low rank correction).

- TSLU involves a rank-P update at each step. p 1
age

Growth factor for TSLU based factorization

average growth factor {partial pivoting;b=1,2,4,8,16,32)

10 3 7
N 7

7 parallel pivoting

growth factor

matirx size
« Unstable for large P and large matrices.
* When P equals the number of rows, TSLU is equivalent to parallel pivoting.

Courtesy of H. Xiang Page 12

Making TSLU stable - preprocessing step to find good pivots

WO H(T>W0 W, ﬁgWo W, ngo
0 1 2 0 2 0] — —— 2 4
2 o =Tl L |k, 2 f 4 | =MoLl \1
| 9 Good pivots for
2 0 1 4 factorizing W
S LW
0 0 (4 1)
4 1 _HlLlUl 2 O
1 0O —r—
e I1I>w
W, m’w, W, e
01 (1 4) — (1 4 (4 2)
0 2| — - — 1 4
14 “TI.L.U 0 2 =[1.L.U>
0 0 222 4 2
W3 H§W3
2 1 (4 2)
0 2
| ol LU 0 2
4 2
time

> Page 13

Making TSLU stable - the overall idea

At each node in tree, TSLU selects b pivot rows from
2b candidates from its 2 child nodes

At each node, do LU on 2b original rows selected by
child nodes, not U factors from child nodes

When TSLU done, permute b selected rows to top of
original matrix, redo b steps of LU without pivoting

CALU — Communication Avoiding LU for general A
» Use TSLU for panel factorizations
* Apply to rest of matrix
« Cost: redundant panel factorizations

Benefit:
« Stable in practice, but not same pivot choice as GEPP
* b times fewer messages overall - faster

Joint work with J. Demmel, H. Xiang

Page 14

Growth factor for CALU approach

Average growth factor(Wilkinson's definition, randn, 2D layout, New pivoting)
600

——P=256,b=32
500H " P-256b=16
—a—-P=128,b=64
——-P=128,b=32
400 & -P=128b=16
— = P=64b=128
— "= P=g4b=64
— 4 P=64b=32
— * P=g4b=16

------- y=n2’3

3007

200~

100 L l ! l
1024 2048 4096 8192

Like threshold pivoting with worst case threshold = .33, so |L| <=3
Testing shows about same residual as GEPP
Page 15

Stability of CALU

Consider the m-by-n matrix W, where W: and W: are b-by-b, and
suppose the permutation returned by TSLU is the identity.

Wl W5 _ _
714 — W
W= xz Vv& TSLU: w, LTy,
3 7 : w, | — w, -
W, W, W, |

After the factorization of first panel by CALU, W, (the Schur
complement of Ws) is not bounded as in GEPP, but:

Wl Wl WS
W, W, W, _7- Ly, I, U
W, W, W, —W,
~W, ~W,

Pivot growth is no worse than PP applied to a different matrix
whose entries are the same as the entries of the original matrix.

Page 16

CALU — a communication avoiding LU factorization

Consider a 2D grid of P processors P -by-P_, using a 2D block cyclic layout with square blocks of size b.

Forib=1ton-1stepb
AP) = A(ib:n, ib:n)

(1) Find permutation for current panel using TSLU O(n/blog, P.)

(2) Apply all row permutations (pdlaswp) O(n/b(log, P, +1og, P.)) !
- broadcast pivot information along the rows of the grid

(3) Compute panel factorization (dtrsm)

(4) Compute block row of U (pdtrsm) O(n/blog, F,)
- broadcast right diagonal part of L of current panel

(5) Update trailing matrix (pdgemm) O(n/b(log, P. +1og, P.))
- broadcast right block column of L
- broadcast down block row of U

Page 17

LU for General Matrices

* Costof CALU vs ScalAPACK's PDGETRF
* n x n matrix on P2 x P12 processor grid, block size b
« Flops: (2/3)n3/P + (3/2)nb / P72 vs (2/3)n3/P + n2b/P1/?2
« Bandwidth: n? log P/P"2 VS same
- Latency: 3nlogP/b vs 1.5 nlog P+ 3.5nlogP /b

* Close to optimal (modulo log P factors)
« Assume: O(n?4/P) memory/processor, O(n3) algorithm,
« Choose b near n/P'2 (its upper bound)
- Bandwidth lower bound: Q(n? /P'2) — just log(P) smaller

- Latency lower bound: Q(P'2) — just polylog(P) smaller

Page 18

Evaluation of the performance

« Experiments performed on two platforms at NERSC:

IBM p575 POWER 5 system, 111 compute nodes, 8 processors per node
- each processor is clocked at 1.9 GHz, theoretical peak of 7.6 GFLOPs/sec.

- each node has 32 GB memory.

- MPI Point to Point internode Latency is 5 usec.

- peak Bandwidth is 3100 MB/sec.

Opteron cluster with 356 dual-processor nodes

- each node has 6 GB memory

- each processor is clocked at 2.2 GHz, theoretical peak of 4.4 GFLOPs/sec.
- Switch MPI Unidirectional Latency is 4.5 usec.

- peak Switch MPI Unidirectional Bandwidth is 620 MB/sec.

Page 19

Performance vs ScaLAPACK

TSQR

* Pentium Il cluster, Dolphin Interconnect, MPICH

* Up to 6.7x speedup (16 procs, 100K x 200)

* BlueGene/L - Up to 4x speedup (32 procs, 1M x 50)
TSLU

* IBM Power 5 - Up to 4.37x faster (16 procs, 1M x 150)

« Cray XT4 - Up to 5.52x faster (8 procs, 1M x 150)
CALU

* IBM Power 5 - Up to 2.29x faster (64 procs, 1000 x 1000)

* Cray XT4 - Up to 1.81x faster (64 procs, 1000 x 1000)

All use recursive algorithms (Toledo, EImroth-Gustavson)
locally.

Page 20

Speedup prediction for a Petascale machine - up to 81x

lime LU ScalAFHLK/ 1ime new LU max=80,B885Z, n=10000, F=40dt

8_ ... 80
7.5
70
7
F 60
6.5
6 - -50
s
S 55
S, L 140
o
5
36| 512| | 3
45
42.7 50.3
20
4
349| 618| 355| 39.0
35 10
26.8| 50.8| 26.6 | 28.7
3
0 2 4 6 8 10 12 14
log2(P)

Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.
y=2-10"5,a =107s, =2-107s/ word.
Page 21

Conclusions

* Possible to minimize communication complexity of much
dense and sparse linear algebra

* Practical speedups
« Approaching theoretical lower bounds

* The new algorithms minimize the number of messages
exchanged at the cost of some redundant computation.

* Recent work extends the bounds to sparse matrix
multiplication and sparse direct factorizations.

Page 22

Conclusions

Lots of prior work, some recent work
 Idea of binary reduction tree for parallel QR previously studied by
* Golub, Plemmons, Sameh 1988 - first to suggest the idea
- Pothen, Raghavan, 1989 - implement it using logP messages
+ Flat trees algorithms, called tiled algorithms used in the context of
* Out of core - Gunter, van de Geijn 2005

« Multicore, Cell processors - Buttari, Langou, Kurzak and Dongarra
(2007, 2008), Quintana-Orti, Quintana-Orti, Chan, van Zee, van de
Geijn (2007,2008).

And some ideas are new
« Parallel CAQR, CALU
« Bounds on communication

Page 23

Future Work

Many open problems

Automatic tuning - choose the right communication
pattern/tree.

Extend optimality proofs to general architectures
Which preconditioners work?

Page 24

