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Research context

Communication-optimal operations for linear algebra, first
results in dense LU and QR factorizations

Conclusions and future work
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Motivation and challenges

* Running time of an algorithm is sum of 3 terms:
« #flops * time per flop
 # words moved / bandwidth
 # messages * latency
* Exponentially growing gaps between
« Time_per_flop << 1/Network BW << Network Latency
 Improving 59%l/year vs 26%l/year vs 15%lyear
« Time_per_flop << 1/Memory BW << Memory Latency
* Improving 59%l/year vs 23%l/year vs 5.5%lyear
« (Goal : reorganize linear algebra to avoid communication
* Not just hiding communication
* Arbitrary speedups possible
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Communication Lower Bounds for
Dense Linear Algebra — Summary of theory

Matrix multiply, using 2n3 flops (sequential or parallel)
* Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
« Lower bound on Bandwidth = Q (#flops / (local/fast memory size)'? )
- Lower bound on Latency = Q (#flops / (local/fast memory size)*? )
 Attained by usual block algorithm (sequential), Cannon (parallel)

Same lower bounds apply to LU, QR and Cholesky
- Assumption: O(n3) algorithms; LU is easy, Cholesky trickier, QR subtle

LAPACK and ScalLAPACK do not attain these bounds for LU, QR
« ScalLAPACK attains bandwidth lower bound
— But sends O((mn/P)"2) times more messages
- LAPACK attains neither; O((m2/W)"2) times more bandwidth

But new LU, QR do attain them, mod polylog factors
« LU requires a new pivoting scheme, still stable
* QR requires new representation of Q, O(n?) more flops
« Sequential Recursive LU and QR minimize bandwidth, not latency

Cholesky: ScaLAPACK attains lower bounds, LAPACK just

bandwidth

Joint work with G. Ballard, J. Demmel, L. Grigori, M. Hoemmen, O. Holtz, J. Langou, O.
Schwartz
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Lower Bounds on Communication for parallel LU

« Matrix multiplication lower bounds on communication
bandwidth (Hong,Kung 1981, Irony/Toledo/Tishkin, 2004) extended
to provide latency bounds:

- each processor has O(n” / P) memory

2
#words = Q(n_) # messages = Q(\/F )

VP

« Bounds hold for LU using a simple example:
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LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a Pr by Pc grid of processors
Forib=1ton-1stepb
Alb) = A(ib:n, ib:n)

(1) Compute panel factorization (pdgetf2) O(n 10g2 Pr)
- find pivot in each column, swap rows

(2) Apply all row permutations (pdlaswp) 0(n/b(10g2 Pc + 10g2 pr)) ,
- broadcast pivot information along the rows

- swap rows at left and right

(3) Compute block row of U (pdtrsm) O(n/blog, P,)
- broadcast right diagonal block of L of current panel

(4) Update trailing matrix (pdgemm) 0(n/b(10g2 P4 10g2 P)) “
- broadcast right block column of L ¢ :
- broadcast down block row of U
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TSQR: an approach for QR factorization of a tall skinny matrix
using Householder transformations

* QR decomposition of m x n matrix W, m >>n
« TSQR = “Tall Skinny QR”
* P processors, block row layout
» Usual Parallel Algorithm
« Compute Householder vector for each column
* Number of messages « nlog P
« Communication Avoiding Algorithm
* Reduction operation, with QR as operator
* Number of messages « log P

Wo | > | Ro| 2R
W= W1 _» R1O Y o1 \ n
- R B / 02
wz > R20 _» Ry
ALE L R3p-

* Joint work with J. Demmel, M. Hoemmen, J. Langou
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Parallel TSQR
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Minimizing Communication in TSQR
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Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?
Choose reduction tree dynamically Page 9



Obvious generalization of TSQR to LU
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Stability of the LU factorization

« Consider the growth factor

k

max. ij

i,j.k a

o = where a;.k) are the values at the k-th step.

a,

max, ;

*  Experiments performed for various distribution of matrices with n < 1024 [Trefethen and
Schreiber '90] showed that the average growth factor normalized by the standard deviation
of the initial matrix elements is:

- close to n?3 for partial pivoting, n'2 for complete pivoting.

« Two reasons considered to be important for the average case stability:
- the multipliers in L are small,

- the correction introduced at each elimination step is of rank 1.

Other strategies:
- pairwise pivoting considered reasonably stable (low rank correction).

- TSLU involves a rank-P update at each step. p 1
age



Growth factor for TSLU based factorization

average growth factor {partial pivoting;b=1,2,4,8,16,32)

10 3 7
N 7

7 parallel pivoting

growth factor

matirx size
« Unstable for large P and large matrices.
*  When P equals the number of rows, TSLU is equivalent to parallel pivoting.
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Making TSLU stable - preprocessing step to find good pivots
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Making TSLU stable - the overall idea

At each node in tree, TSLU selects b pivot rows from
2b candidates from its 2 child nodes

At each node, do LU on 2b original rows selected by
child nodes, not U factors from child nodes

When TSLU done, permute b selected rows to top of
original matrix, redo b steps of LU without pivoting

CALU — Communication Avoiding LU for general A
» Use TSLU for panel factorizations
* Apply to rest of matrix
« Cost: redundant panel factorizations

Benefit:
« Stable in practice, but not same pivot choice as GEPP
* b times fewer messages overall - faster

Joint work with J. Demmel, H. Xiang
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Growth factor for CALU approach

Average growth factor(Wilkinson's definition, randn, 2D layout, New pivoting)
600
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Like threshold pivoting with worst case threshold = .33, so |L| <=3
Testing shows about same residual as GEPP
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Stability of CALU

Consider the m-by-n matrix W, where W: and W: are b-by-b, and
suppose the permutation returned by TSLU is the identity.

Wl W5 _ _
714 — W
W= xz Vv& TSLU: w, LTy,
3 7 : w, | — w, -
W, W, W, |

After the factorization of first panel by CALU, W, (the Schur
complement of Ws) is not bounded as in GEPP, but:

Wl Wl WS
W, W, W, _7- Ly, I, U
W, W, W, —W,
~W, ~W,

Pivot growth is no worse than PP applied to a different matrix
whose entries are the same as the entries of the original matrix.
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CALU — a communication avoiding LU factorization

Consider a 2D grid of P processors P -by-P_, using a 2D block cyclic layout with square blocks of size b.

Forib=1ton-1stepb
AP) = A(ib:n, ib:n)

(1) Find permutation for current panel using TSLU  O(n/blog, P.)

(2) Apply all row permutations (pdlaswp) O(n/b(log, P, +1og, P.)) !
- broadcast pivot information along the rows of the grid

(3) Compute panel factorization (dtrsm)

(4) Compute block row of U (pdtrsm) O(n/blog, F,)
- broadcast right diagonal part of L of current panel

(5) Update trailing matrix (pdgemm) O(n/b(log, P. +1og, P.))
- broadcast right block column of L
- broadcast down block row of U
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LU for General Matrices

* Costof CALU vs ScalAPACK's PDGETRF
* n x n matrix on P2 x P12 processor grid, block size b
« Flops:  (2/3)n3/P + (3/2)nb / P72 vs (2/3)n3/P + n2b/P1/?2
« Bandwidth: n? log P/P"2 VS same
- Latency: 3nlogP/b vs 1.5 nlog P+ 3.5nlogP /b

* Close to optimal (modulo log P factors)
« Assume: O(n?4/P) memory/processor, O(n3) algorithm,
« Choose b near n/P'2 (its upper bound)
- Bandwidth lower bound: Q(n? /P'2) — just log(P) smaller

- Latency lower bound: Q(P'2) — just polylog(P) smaller
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Evaluation of the performance

« Experiments performed on two platforms at NERSC:

IBM p575 POWER 5 system, 111 compute nodes, 8 processors per node
- each processor is clocked at 1.9 GHz, theoretical peak of 7.6 GFLOPs/sec.

- each node has 32 GB memory.

- MPI Point to Point internode Latency is 5 usec.

- peak Bandwidth is 3100 MB/sec.

Opteron cluster with 356 dual-processor nodes

- each node has 6 GB memory

- each processor is clocked at 2.2 GHz, theoretical peak of 4.4 GFLOPs/sec.
- Switch MPI Unidirectional Latency is 4.5 usec.

- peak Switch MPI Unidirectional Bandwidth is 620 MB/sec.
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Performance vs ScaLAPACK

TSQR

* Pentium Il cluster, Dolphin Interconnect, MPICH

* Up to 6.7x speedup (16 procs, 100K x 200)

* BlueGene/L - Up to 4x speedup (32 procs, 1M x 50)
TSLU

* IBM Power 5 - Up to 4.37x faster (16 procs, 1M x 150)

« Cray XT4 - Up to 5.52x faster (8 procs, 1M x 150)
CALU

* IBM Power 5 - Up to 2.29x faster (64 procs, 1000 x 1000)

* Cray XT4 - Up to 1.81x faster (64 procs, 1000 x 1000)

All use recursive algorithms (Toledo, EImroth-Gustavson)
locally.
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Speedup prediction for a Petascale machine - up to 81x

lime LU ScalAFHLK/ 1ime new LU max=80,B885Z, n=10000, F=40dt
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Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.
y=2-10"5,a =107s, =2-107s/ word.
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Conclusions

* Possible to minimize communication complexity of much
dense and sparse linear algebra

* Practical speedups
« Approaching theoretical lower bounds

* The new algorithms minimize the number of messages
exchanged at the cost of some redundant computation.

* Recent work extends the bounds to sparse matrix
multiplication and sparse direct factorizations.
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Conclusions

Lots of prior work, some recent work
 Idea of binary reduction tree for parallel QR previously studied by
* Golub, Plemmons, Sameh 1988 - first to suggest the idea
- Pothen, Raghavan, 1989 - implement it using logP messages
+ Flat trees algorithms, called tiled algorithms used in the context of
* Out of core - Gunter, van de Geijn 2005

« Multicore, Cell processors - Buttari, Langou, Kurzak and Dongarra
(2007, 2008), Quintana-Orti, Quintana-Orti, Chan, van Zee, van de
Geijn (2007,2008).

And some ideas are new
« Parallel CAQR, CALU
« Bounds on communication
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Future Work

Many open problems

Automatic tuning - choose the right communication
pattern/tree.

Extend optimality proofs to general architectures
Which preconditioners work?
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