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Plan

• Research context

• Communication-optimal operations for linear algebra, first
results in dense LU and QR factorizations

• Conclusions and future work
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Motivation and challenges
• Running time of an algorithm is sum of 3 terms:

• # flops * time_per_flop
• # words moved / bandwidth
• # messages * latency

• Exponentially growing gaps between
• Time_per_flop << 1/Network BW << Network Latency

• Improving   59%/year  vs   26%/year  vs  15%/year
• Time_per_flop << 1/Memory BW << Memory Latency

• Improving   59%/year  vs  23%/year  vs  5.5%/year
• Goal : reorganize linear algebra to avoid communication

• Not just hiding communication
• Arbitrary speedups possible
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Communication Lower Bounds for
 Dense Linear Algebra – Summary of theory

• Matrix multiply,  using 2n3 flops (sequential or parallel)
• Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
• Lower bound on Bandwidth = Ω (#flops / (local/fast memory size)1/2 )
• Lower bound on Latency = Ω (#flops / (local/fast memory size)3/2 )
• Attained by usual block algorithm (sequential), Cannon (parallel)

• Same lower bounds apply to LU, QR and Cholesky
• Assumption:  O(n3) algorithms;  LU is easy, Cholesky trickier, QR subtle

• LAPACK and ScaLAPACK do not attain these bounds for LU, QR
• ScaLAPACK attains bandwidth lower bound

– But sends O((mn/P)1/2)  times more messages
• LAPACK attains neither; O((m2/W)1/2) times more bandwidth

• But new LU, QR do attain them, mod polylog factors
• LU requires a new pivoting scheme, still stable
• QR requires new representation of Q, O(n2) more flops
• Sequential Recursive LU and QR minimize bandwidth, not latency

– Cholesky: ScaLAPACK attains lower bounds, LAPACK just
bandwidth

– Joint work with G. Ballard, J. Demmel, L. Grigori, M. Hoemmen, O. Holtz, J. Langou, O.
Schwartz

Courtesy of J. Demmel
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Lower Bounds on Communication for parallel LU

• Matrix multiplication lower bounds on communication
bandwidth (Hong,Kung 1981, Irony/Toledo/Tishkin, 2004) extended
to provide latency bounds:

       - each processor has                  memory

• Bounds hold for LU using a simple example:

! 

#words " #
n
2

P

$ 

% 
& 

' 

( 
) 

! 

#messages " # P( )

! 

I "B

A I

I

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

=

I

A I

I

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 
.

I "B

I AB

I

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

! 

O(n
2
/P)



Page 6

LU factorization (as in ScaLAPACK pdgetrf)
LU factorization on a Pr by Pc grid of processors
For ib = 1 to n-1 step b
     A(ib)  = A(ib:n, ib:n)

 (1) Compute panel factorization (pdgetf2)
        - find pivot in each column, swap rows

 (2) Apply all row permutations (pdlaswp)
        - broadcast pivot information along the rows
        - swap rows at left and right

(3) Compute block row of U (pdtrsm)
         - broadcast right diagonal block of L of current panel

 (4) Update trailing matrix (pdgemm)
        - broadcast right block column of L
        - broadcast down block row of U
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TSQR: an approach for QR factorization of a tall skinny matrix
using Householder transformations

W =
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W1
W2
W3

R00
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• QR decomposition of m x n matrix W,  m >> n
• TSQR = “Tall Skinny QR”
• P processors, block row layout

• Usual Parallel Algorithm
• Compute Householder vector for each column
• Number of messages ∝ n log P

• Communication Avoiding Algorithm
• Reduction operation, with QR as operator
• Number of messages ∝ log P

• Joint work with J. Demmel, M. Hoemmen, J. Langou
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Parallel TSQR

QR
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Minimizing Communication in TSQR
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Dual Core:

Choose reduction tree dynamically
Multicore / Multisocket / Multirack / Multisite / Out-of-core:  ?



Page 10

Obvious generalization of TSQR to LU

LU
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Stability of the LU factorization
• Consider the growth factor

                                            where             are the values at the k-th step.

• Experiments performed for various distribution of matrices with n < 1024 [Trefethen and
Schreiber ’90] showed that the average growth factor normalized by the standard deviation
of the initial matrix elements is:

     - close to n2/3 for partial pivoting, n1/2 for complete pivoting.

• Two reasons considered to be important for the average case stability:

     - the multipliers in L are small,

     - the correction introduced at each elimination step is of rank 1.

Other strategies:

   - pairwise pivoting considered reasonably stable (low rank correction).

     - TSLU involves a rank-P update at each step.
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Growth factor for TSLU based factorization

• Unstable for large P and large matrices.

• When P equals the number of rows, TSLU is equivalent to parallel pivoting.

Courtesy of H. Xiang
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Making TSLU stable - preprocessing step to find good pivots

time

P0

P1

P2

P3

! 

2 4

0 1

2 0

1 2

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=(
0
L
0
U
0

! 

2 0

0 0

4 1

1 0

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=(
1
L
1
U
1

! 

0 1

1 4

0 0

0 2

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=(
2
L
2
U
2

! 

2 1

0 2

1 0

4 2

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=(
3
L
3
U
3

! 

2 4

2 0

" 

# 
$ 

% 

& 
' 

! 

4 1

2 0

" 

# 
$ 

% 

& 
' 

! 

1 4

0 2

" 

# 
$ 

% 

& 
' 

! 

4 2

0 2

" 

# 
$ 

% 

& 
' 

! 

2 4

2 0

4 1

2 0

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=(0L
0
U
0

! 

1 4

0 2

4 2

0 2

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=(2L2U 2

! 

4 1

2 4

" 

# 
$ 

% 

& 
' 

! 

4 2

1 4

" 

# 
$ 

% 

& 
' 

! 

4 1

2 4

4 2

1 4

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=(
0
L
0
U
0

! 

4 1

1 4

" 

# 
$ 

% 

& 
' 

! 

W
0

! 

"
0

T
W

0

! 

W
0

! 

"0

T

W 0

! 

W
0

! 

"
0

T

W
0

! 

W
1

! 

"
1

T
W
1

! 

W
2

! 

"
2

T
W

2

! 

W
2

! 

"2

T

W 2

! 

W
3

! 

"
3

T
W

3

Good pivots for
factorizing W



Page 14

Making TSLU stable - the overall idea
• At each node in tree, TSLU selects b pivot rows from

2b candidates from its 2 child nodes
• At each node, do LU on 2b original rows selected by

child nodes, not U factors from child nodes
• When TSLU done, permute b selected rows to top of

original matrix, redo b steps of LU without pivoting

• CALU – Communication Avoiding LU for general A
• Use TSLU for panel factorizations
• Apply to rest of matrix
• Cost: redundant panel factorizations

• Benefit:
• Stable in practice, but not same pivot choice as GEPP
• b times fewer messages overall - faster

• Joint work with J. Demmel, H. Xiang
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Growth factor for CALU approach

Like threshold pivoting with worst case threshold = .33 ,  so |L| <= 3
Testing shows about same residual as GEPP 
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Stability of CALU
• Consider the m-by-n matrix W, where W1 and W3 are b-by-b, and

suppose the permutation returned by TSLU is the identity.

• After the factorization of first panel by CALU,       (the Schur
complement of W8) is not bounded as in GEPP, but:

• Pivot growth is no worse than PP applied to a different matrix
whose entries are the same as the entries of the original matrix.
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CALU – a communication avoiding LU factorization
• Consider a 2D grid of P processors Pr-by-Pc , using a 2D block cyclic layout with square blocks of size b.

For ib = 1 to n-1 step b
     A(ib)  = A(ib:n, ib:n)

 (1) Find permutation for current panel using TSLU

 (2) Apply all row permutations (pdlaswp)
        - broadcast pivot information along the rows of the grid

  (3) Compute panel factorization (dtrsm)

 (4) Compute block row of U (pdtrsm)
         - broadcast right diagonal part of L of current panel

 (5) Update trailing matrix (pdgemm)
        - broadcast right block column of L
          - broadcast down block row of U
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LU for General Matrices

• Cost of CALU   vs   ScaLAPACK’s PDGETRF
• n x n matrix on P1/2 x P1/2 processor grid, block size b
• Flops:      (2/3)n3/P + (3/2)n2b / P1/2  vs (2/3)n3/P + n2b/P1/2

• Bandwidth: n2 log P/P1/2                   vs     same
• Latency:        3 n log P / b       vs 1.5 n log P+ 3.5n logP / b

• Close to optimal (modulo log P factors)
• Assume: O(n2/P) memory/processor, O(n3) algorithm,
• Choose b near  n / P1/2  (its upper bound)
• Bandwidth lower bound: Ω(n2 /P1/2) – just log(P) smaller
• Latency lower bound: Ω(P1/2) – just polylog(P) smaller
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Evaluation of the performance

• Experiments performed on two platforms at NERSC:

    IBM p575 POWER 5 system, 111 compute nodes, 8 processors per node
    - each processor is clocked at 1.9 GHz, theoretical peak of 7.6 GFLOPs/sec.

    - each node has 32 GB memory.

    - MPI Point to Point internode Latency is 5 usec.

    - peak Bandwidth is 3100 MB/sec.

    Opteron cluster with 356 dual-processor nodes
    - each node has 6 GB memory

    - each processor is clocked at 2.2 GHz, theoretical peak of 4.4 GFLOPs/sec.

    - Switch MPI Unidirectional Latency is 4.5 usec.

    - peak Switch MPI Unidirectional Bandwidth is 620 MB/sec.
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Performance vs ScaLAPACK
• TSQR

• Pentium III cluster, Dolphin Interconnect, MPICH
• Up to 6.7x speedup (16 procs, 100K x 200)

• BlueGene/L - Up to 4x speedup (32 procs, 1M x 50)
• TSLU

• IBM Power 5 - Up to 4.37x faster (16 procs, 1M x 150)
• Cray XT4 - Up to 5.52x faster (8 procs, 1M x 150)

• CALU
• IBM Power 5 - Up to 2.29x faster (64 procs, 1000 x 1000)
• Cray XT4 - Up to 1.81x faster (64 procs, 1000 x 1000)

• All use recursive algorithms (Toledo, Elmroth-Gustavson)
locally.
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 Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.

Speedup prediction for a Petascale machine - up to 81x

./102,10,102
9512
wordsss
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P = 8192
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Conclusions

• Possible to minimize communication complexity of much
dense and sparse linear algebra
• Practical speedups
• Approaching theoretical lower bounds

• The new algorithms minimize the number of messages
exchanged at the cost of some redundant computation.

• Recent work extends the bounds to sparse matrix
multiplication and sparse direct factorizations.
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Conclusions

• Lots of prior work, some recent work
• Idea of binary reduction tree for parallel QR previously studied by

• Golub, Plemmons, Sameh 1988 - first to suggest the idea
• Pothen, Raghavan, 1989 - implement it using logP messages

• Flat trees algorithms, called tiled algorithms used in the context of
• Out of core - Gunter, van de Geijn 2005
• Multicore, Cell processors - Buttari, Langou, Kurzak and Dongarra

(2007, 2008), Quintana-Orti, Quintana-Orti, Chan, van Zee, van de
Geijn (2007,2008).

• And some ideas are new
• Parallel CAQR, CALU
• Bounds on communication
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Future Work

• Many open problems

• Automatic tuning - choose the right communication
pattern/tree.

• Extend optimality proofs to general architectures
• Which preconditioners work?


