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HiePACS overview

A multidisciplinary approach

Valldatlon for

Multiscale Schemes, Algebra solvers
Multiresolution Linear Algebra, .
and Hierarchical Fast Multipole Method, Matexial Physies
Approaches Code Coupling

BRGM
saulg!mgwm and Mﬂm GPGPU ami CELLs, c
Many Thread Scheduling, NUMA Access and Data CEA Industrial
Affinity, Irregular Data Distribution, Algorithmics for D% transfert
Code Coupling, Computational Steering

Erontier Simulations, Towards Peta-Exascale Computing
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General High-Performance framework

Modern (future) platforms
@ Massively multiprocessors and multicores
@ Hierarchical structure
@ Huge number of computational resources
@ Heterogeneous ressources (a node may contain multicores,

GPUs, ...)
Necessity to adapt/design (new) algorithms to efficiently exploit these
platforms

New algorithmic problems |

@ How to achieve a high scalability with applications initially
designed to run over “small” number of processors?

@ How can an complex applications/algorithms handle the complex
memory hierarchy and the heterogeneity?

@ How deal the with the huge amount of data that will be managed
by our target applications?

.




HiePACS overview

Scientific foundations |

@ High performance computing on next generation architectures
@ High performance solvers for linear algebra problems
o Hybrid direct/iterative solvers based on algebraic
decomposition domain
@ Hybrid solvers based on a combination of multigrid methods and of
direct solvers
o Linear Krylov solvers
e Eigensolvers

@ High performance Fast Multipole Method for N-body problems
@ Algorithmics for code coupling in complex simulations

A

Application domains

@ Material Physics
@ Application customers of high performance linear algebra solvers
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Solution techniques for large linear systems

Full direct

The “spectrum” of linear algebra solvers |

Direct: lterative:
@ Robust/accurate for general @ Problem dependent efficiency/controlled
problems accuracy
@ BLAS-3 based implementation @ Only mat-vec required, fine grain computation
@ Memory/CPU prohibitive for large @ Less memory consumption, possible trade-off
3D problems with CPU
@ Limited parallel scalability @ Attractive "build-in" parallel features )
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Develop robust scalable parallel hybrid direct/iterative linear solvers

@ Exploit the efficiency and robustness of the sparse direct solvers
@ Develop robust parallel preconditioners for iterative solvers

@ Take advantage of the natural scalable parallel implementation of
iterative solvers

Domain Decomposition (DD)

Natural approach for PDE’s

Extend to general sparse matrices

Partition the problem into subdomains,
subgraphs

@ Use a direct solver on the subdomains

Robust preconditioned iterative solver

311 cut edges.
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MaPHyS: Massively Parallel Hybrid Solver

Parallel preconditioning features S() = A(r?r,. — Ar AL A,
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Algebraic Additive Schwarz preconditioner

Main characteristics in 2D |

@ The ratio interface/interior is small

@ Does not require large amount of memory to store the preconditioner
@ Computation/application of the preconditioner are fast

@ They consist in a call to LAPACK/BLAS-2 kernels

v

Main characteristics in 3D |

@ The ratio interface/interior is large

@ The storage of the preconditioner might not be affordable

@ The computation/application cost of the preconditioner might penalize the method
@ Need cheaper Algebraic Additive Schwarz form of the preconditioner
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What tricks exist to construct cheaper preconditioners

Sparsification strategy ‘

@ Sparsify the preconditioner by dropping the smallest entries

=~ sk i Ske > E(ISkk| + [Seel)
Ske = { 0 else

@ Good in many PDE contexts

@ Remarks: This sparse strategy preserves symmetry )

Mixed arithmetic strategy |

@ Compute and store the preconditioner in 32-bit precision arithmetic Is accurate enough?
@ Limitation when the conditioning exceeds the accuracy of the 32-bit computations Fix it!
@ |dea: Exploit 32-bit operation whenever possible and ressort to 64-bit at critical stages
(*]

Remarks: the backward stability result of GMRES indicates that it is hopeless to expect
convergence at a backward error level smaller than the 32-bit accuracy [C.Paige,
M.Rozloznik, Z.Strakos - 06]

@ |dea: To overcome this limitation we use FGMRES [Y.Saad - 93]

.
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Computational framework

Target computer

@ BMSP4 @ CINES

@ CrayXD1i @ CERFACS

@ BMJS21 @ CERFACS

@ Blue Gene/L @ CERFACS

@ BMSP4 @ IDRIS

@ SystemX @ VIRGINIA TECH

System X @ VIRGINIA TECH

Blue Gene/L @ CERFACS IBM JS21 @ CERFACS

@ 2200 processors @ 2048 processors @ 216 processors

@ Apple Xserve G5 @ PowerPC 440s @ PowerPC 970MP
@ 2-Way SMP @ 2-Way SMP @ 4-Way SMP

@ running at 2.3 GHz @ running at 700 MHz @ running at 2.5 GHz
@ 4 Gbytes/node @ 1 Gbytes/node @ 8 Gbytes/node

@ latency of 6.1 us @ latency of 1.3 - 10 us @ latency of 3.2 us

12/26 Toward robust hybrid parallel sparse solvers



Academic model problems

Problem patte |
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@ Classical Poisson problems

@ Heterogeneous problems

@ Anisotropic-heterogeneous problems

@ Convection dominated term
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Numerical behaviour of sparse preconditioners

Convergence history of PCG Time history of PCG |

3D heterogeneous diffusion problem 3D heterogeneous diffusion problem
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@ 3D heterogeneous diffusion problem with 43 Mdof mapped on 1000 processors

@ For (¢ «)the convergence is marginally affected while the memory saving is significant 15%
@ For (¢ >>) alot of resources are saved but the convergence becomes very poor 1%

@ Even though they require more iterations, the sparsified variants converge faster as the time
per iteration is smaller and the setup of the preconditioner is cheaper.
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Numerical behaviour of mixed preconditioners

Convergence history of PCG Time history of PCG |

3D heterogeneous diffusion problem 3D heterogeneous diffusion problem
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@ 3D heterogeneous diffusion problem with 43 Mdof mapped on 1000 processors

@ 64-bit and mixed computation both attained an accuracy at the level of 64-bit machine
precision

@ The number of iterations slightly increases

@ The mixed approach is the fastest, down to an accuracy that is problem dependent
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Weak scalability on massively parallel platforms

Numerical scalability rallel performanc |

3D heterogeneous diffusion problem 3D heterogeneous diffusion problem
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@ The solved problem size varies from 2.7 up to 74 Mdof

@ Control the grow in the # of iterations by introducing a coarse space correction

@ The computing time increases slightly when increasing # sub-domains

@ Although the preconditioners do not scale perfectly, the parallel time scalability is acceptable

@ The trend is similar for all variants of the preconditioners using CG Krylov solver
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Numerical alternative: numerical scalability in 3D

in based coarse space : M = Mg + R} where Ay = Ry SR},

@ “As many” dof in the coarse space as sub-domains [Carvalho,
Giraud, Le Tallec, 01]

@ Partition of unity : Rg' simplest constant interpolation

y
2D Heterogenous diffusion 3D Heterogenous diffusion

2D Heterogenous diffusion Problem 3D Heterogenous diffusion Problem
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Summary on the model problems

Sparse preconditioner |

@ For reasonable choice of the dropping parameter & the convergence is marginally affected
@ The sparse preconditioner outperforms the dense one in time and memory

V.

Mixed preconditioner |

@ Mixed arithmetic and 64-bit both attained an accuracy at the level of 64-bit machine precision
@ Mixed preconditioner does not delay that much the convergence

v

On the parallel scalability ‘

@ Although these preconditioners are local, possibly not numerically scalable, they exhibit a
fairly good parallel time scalability (possible fix for elliptic problems)

@ The trends that have been observed on this choice of model problem have been observed on
many other problems

V.
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Indefinite systems in s ral mechanics

Fuselage of 6.5 Mdof Rouet of 1.3 Mdof

@ Composed of its skin, stringers and @ A 90 degrees sector of an impeller
frames @ |Itis composed of 3D volume elements
@ Midiinn shell elements are used @ Cyclic conditions are added using
@ Each node has 6 unknowns elements with 3 Lagranges multipliers
@ A force perpendicular to the axis is @ Angular velocities are introduced
applied y
v
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Partitioning strategies

Main characteristics |

@ Linear elasticity equations with constraints such as rigid bodies and cyclic conditions

@ Lagrange multipliers = symmetric indefinite augmented systems )

Numerical difficulties |

@ The local matrix associated with the internal unknowns might be structurally singular
@ Fix Lagrange multipliers difficulties

@ Idea: enforce the Lagrange multipliers to be moved into the interface

.

Performance difficulties

@ Needs to balance and optimize the distribution of the Lagrange multipliers among the
balanced subdomains

@ Apply constraint (weights) to the partitioner (dual mesh graph)
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Numerical behaviour of sparse preconditioners

Convergence histo
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@ Fuselage problem of 6.5 Mdof dof mapped on 16 processors
@ The sparse preconditioner setup is 4 times faster than the dense one (19.5 v.s. 89 seconds)
@ In term of global computing time, the sparse algorithm is about twice faster

@ The attainable accuracy of the hybrid solver is comparable to the one computed with the
direct solver
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Strong scalability

Numerical scalability Parallel performance |
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@ Fixed problem size: increasing the # of subdomains = an increase in the # of iterations

@ The sparsified variant the most efficient (CPU, memory)
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Exploiting 2-levels of parallelism - motivations

“The numerical improvement’ |

@ Classical parallel implementations (7-/evel ) of DD assign one subdomain per processor
@ Parallelizing means increasing the number of subdomains
@ Increasing the number of subdomains often leads to increasing the number of iterations

@ To avoid this, one can instead of increasing the number of subdomains, keeping it small while
handling each subdomain by more than one processor introducing 2-levels of parallelism

“The parallel performance improvement’ |

@ Large 3D systems often require a huge amount of data storage
@ On SMP node: classical 7-level parallel can only use a subset of the available processors
@ Thus some processors are “wasted”, as they are “idle” during the computation

@ The “idle” processors might contribute to the computation and the simulation runs closer to
the peak of per-node performance by using 2-/levels of parallelism
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Numerical improvement benefits

Fuselage of 6.5Mdof |

# total Algo # # processors/ # iterative
processors subdomains subdomain iter loop time
16 processors 1-level parallel 16 1 147 77.9
2-level parallel 8 2 98 51.4
1-level parallel 32 1 176 58.1
32 processors | 2-level parallel 16 2 147 44.8
2-level parallel 8 4 98 32.5
1-level parallel 64 1 226 54.2
64 processors 2-level parallel 32 2 176 40.1
2-level parallel 16 4 147 31.3
2-level parallel 8 8 98 27.4

@ Reduce the number of subdomains = reduce the number of iterations

@ Though the subdomain size increases, the time of the iterative loop decreases as:

- The number of iterations decreases
- Each subdomain is handled in parallel
- All the iterative kernels are efficiently computed in parallel

@ The speedup factors of the iterative loop vary from 1.3 to 1.8
@ Very attractive especially when the convergence rate depends on the # of subdomains
@ Might be of great interest when embeded into nonlinear solver
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MaPHyS: Massively Parallel Hybrid Solver

A few comments |

@ Robust algebraic domain decomposition with efficient parallel
behaviour

@ Trade-off parallel-numerics handled via multi-level parallelism
(suited for clusters of SMPs)

@ Cheaper memory alternatives through Schur complement
approximation (on going work with Y. Saad)

@ 24 month engineer support from INRIA to consolidate the

prototype (ADT Parallel Scalable Hybrid Library for Large Scale
Simulations: 2009-2011)

.

Software MaPHyS soon available through
http://solstice.gforge.inria.fr/
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http://solstice.gforge.inria.fr/

Framework: INRIA associated team / 2008-2010

PhyLeaS objectives: study of Parallel HYbrid sparse LinEAr Solvers

@ Advent of massively parallel platforms requires new algorithmic designs
@ Linear solvers are very often used in many large engineering simulations

@ Direct and iterative approaches have assets and weaknesses: try to
combine them to benefit from both

V.

PhyLeaS partners |

Univ. Minnesota, Y. Saad - TU Braunschweig, M. Bollhoefer - INRIA Bacchus, P. Hénon, P. Ramet - INRIA HiePacs, O. Coulaud, L. Giraud,

J. Roman (PI) - INRIA Nachos, S. Lanteri -

o’
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Merci for your attention

Questions ?
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