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HiePACS overview

A multidisciplinary approach
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General High-Performance framework

Modern (future) platforms

Massively multiprocessors and multicores
Hierarchical structure
Huge number of computational resources
Heterogeneous ressources (a node may contain multicores,
GPUs, ...)

Necessity to adapt/design (new) algorithms to efficiently exploit these
platforms

New algorithmic problems

How to achieve a high scalability with applications initially
designed to run over “small” number of processors?
How can an complex applications/algorithms handle the complex
memory hierarchy and the heterogeneity?
How deal the with the huge amount of data that will be managed
by our target applications?



HiePACS overview

Scientific foundations
High performance computing on next generation architectures
High performance solvers for linear algebra problems

Hybrid direct/iterative solvers based on algebraic
decomposition domain
Hybrid solvers based on a combination of multigrid methods and of
direct solvers
Linear Krylov solvers
Eigensolvers

High performance Fast Multipole Method for N-body problems
Algorithmics for code coupling in complex simulations

Application domains

Material Physics
Application customers of high performance linear algebra solvers
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Solution techniques for large linear systems

The “spectrum” of linear algebra solvers
Direct:

Robust/accurate for general
problems

BLAS-3 based implementation

Memory/CPU prohibitive for large
3D problems

Limited parallel scalability

Iterative:

Problem dependent efficiency/controlled
accuracy

Only mat-vec required, fine grain computation

Less memory consumption, possible trade-off
with CPU

Attractive ”build-in” parallel features
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Goal

Develop robust scalable parallel hybrid direct/iterative linear solvers

Exploit the efficiency and robustness of the sparse direct solvers

Develop robust parallel preconditioners for iterative solvers

Take advantage of the natural scalable parallel implementation of
iterative solvers

Domain Decomposition (DD)

Natural approach for PDE’s

Extend to general sparse matrices

Partition the problem into subdomains,
subgraphs

Use a direct solver on the subdomains

Robust preconditioned iterative solver
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MaPHyS: Massively Parallel Hybrid Solver

Parallel preconditioning features S(i) = A(i)
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Algebraic Additive Schwarz preconditioner

Main characteristics in 2D [ PhD of J. C. Rioual - 02]

The ratio interface/interior is small

Does not require large amount of memory to store the preconditioner

Computation/application of the preconditioner are fast

They consist in a call to LAPACK/BLAS-2 kernels

Main characteristics in 3D [ PhD of A. Haidar - 08]

The ratio interface/interior is large

The storage of the preconditioner might not be affordable

The computation/application cost of the preconditioner might penalize the method

Need cheaper Algebraic Additive Schwarz form of the preconditioner
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What tricks exist to construct cheaper preconditioners

Sparsification strategy
Sparsify the preconditioner by dropping the smallest entries

bsk` =


s̄k` if s̄k` ≥ ξ(|s̄kk | + |s̄``|)
0 else

Good in many PDE contexts

Remarks: This sparse strategy preserves symmetry

Mixed arithmetic strategy
Compute and store the preconditioner in 32-bit precision arithmetic Is accurate enough?

Limitation when the conditioning exceeds the accuracy of the 32-bit computations Fix it!

Idea: Exploit 32-bit operation whenever possible and ressort to 64-bit at critical stages

Remarks: the backward stability result of GMRES indicates that it is hopeless to expect
convergence at a backward error level smaller than the 32-bit accuracy [C.Paige,
M.Rozložnı́k, Z.Strakoš - 06]

Idea: To overcome this limitation we use FGMRES [Y.Saad - 93]
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Computational framework

Target computer

IBM SP4 @ CINES
Cray XD1 @ CERFACS

IBM JS21 @ CERFACS
Blue Gene/L @ CERFACS
IBM SP4 @ IDRIS
System X @ VIRGINIA TECH

System X @ VIRGINIA TECH

2200 processors

Apple Xserve G5

2-Way SMP

running at 2.3 GHz

4 Gbytes/node

latency of 6.1 µs

Blue Gene/L @ CERFACS

2048 processors

PowerPC 440s

2-Way SMP

running at 700 MHz

1 Gbytes/node

latency of 1.3 - 10 µs

IBM JS21 @ CERFACS

216 processors

PowerPC 970MP

4-Way SMP

running at 2.5 GHz

8 Gbytes/node

latency of 3.2 µs
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Academic model problems

Problem patterns
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Circular flow velocity Problem −1−

Diffusion equation (ε = 1 and v = 0) and convection-diffusion equation
−εdiv(K .∇u) + v .∇u = f in Ω,

u = 0 on ∂Ω.

Classical Poisson problems

Heterogeneous problems

Anisotropic-heterogeneous problems

Convection dominated term
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Numerical behaviour of sparse preconditioners

Convergence history of PCG
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Dense calculation
Sparse with ξ=10−5

Sparse with ξ=10−4

Sparse with ξ=10−3

Sparse with ξ=10−2

Time history of PCG
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Dense calculation
Sparse with ξ=10−5

Sparse with ξ=10−4

Sparse with ξ=10−3

Sparse with ξ=10−2

3D heterogeneous diffusion problem with 43 Mdof mapped on 1000 processors

For (ξ ≪)the convergence is marginally affected while the memory saving is significant 15%

For (ξ ≫) a lot of resources are saved but the convergence becomes very poor 1%

Even though they require more iterations, the sparsified variants converge faster as the time

per iteration is smaller and the setup of the preconditioner is cheaper.
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Numerical behaviour of mixed preconditioners

Convergence history of PCG
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64−bit calculation
mixed arithmetic calculation
32−bit calculation

Time history of PCG
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64−bit calculation
mixed arithmetic calculation
32−bit calculation

3D heterogeneous diffusion problem with 43 Mdof mapped on 1000 processors

64-bit and mixed computation both attained an accuracy at the level of 64-bit machine

precision

The number of iterations slightly increases

The mixed approach is the fastest, down to an accuracy that is problem dependent
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Weak scalability on massively parallel platforms

Numerical scalability
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Dense 64−bit calculation
Dense mixed calculation
Sparse with ξ=10−4
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Parallel performance
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Dense 64−bit calculation
Dense mixed calculation
Sparse with ξ=10−4

     5.3.106    15.106  22.106     31.106     43.106          55.106           74.106

The solved problem size varies from 2.7 up to 74 Mdof

Control the grow in the # of iterations by introducing a coarse space correction

The computing time increases slightly when increasing # sub-domains

Although the preconditioners do not scale perfectly, the parallel time scalability is acceptable

The trend is similar for all variants of the preconditioners using CG Krylov solver
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Numerical alternative: numerical scalability in 3D

Domain based coarse space : M = MAS + RT
OA−1

O R0 where A0 = R0SRT
O

“As many” dof in the coarse space as sub-domains [Carvalho,

Giraud, Le Tallec, 01]

Partition of unity : RT
0 simplest constant interpolation

2D Heterogenous diffusion
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3D Heterogenous diffusion

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

160

180

# Procs

# 
it

er

3D Heterogenous diffusion Problem

mixed calculation

64 bit calculation

coarsegrid correction
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Summary on the model problems [L.Giraud, A.Haidar, L.T.Watson - 08]

Sparse preconditioner
For reasonable choice of the dropping parameter ξ the convergence is marginally affected

The sparse preconditioner outperforms the dense one in time and memory

Mixed preconditioner
Mixed arithmetic and 64-bit both attained an accuracy at the level of 64-bit machine precision

Mixed preconditioner does not delay that much the convergence

On the parallel scalability
Although these preconditioners are local, possibly not numerically scalable, they exhibit a
fairly good parallel time scalability (possible fix for elliptic problems)

The trends that have been observed on this choice of model problem have been observed on
many other problems
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Indefinite systems in structural mechanics S.Pralet, SAMTECH

Fuselage of 6.5 Mdof

Composed of its skin, stringers and
frames

Midlinn shell elements are used

Each node has 6 unknowns

A force perpendicular to the axis is
applied

Rouet of 1.3 Mdof

A 90 degrees sector of an impeller

It is composed of 3D volume elements

Cyclic conditions are added using
elements with 3 Lagranges multipliers

Angular velocities are introduced
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Partitioning strategies

Main characteristics
Linear elasticity equations with constraints such as rigid bodies and cyclic conditions

Lagrange multipliers =⇒ symmetric indefinite augmented systems

Numerical difficulties
The local matrix associated with the internal unknowns might be structurally singular

Fix Lagrange multipliers difficulties

Idea: enforce the Lagrange multipliers to be moved into the interface

Performance difficulties
Needs to balance and optimize the distribution of the Lagrange multipliers among the
balanced subdomains

Apply constraint (weights) to the partitioner (dual mesh graph)
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Numerical behaviour of sparse preconditioners

Convergence history
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Direct calculation
Dense calculation
Sparse with ξ=5.10−7

Sparse with ξ=10−6

Sparse with ξ=5.10−6

Time history
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Direct calculation

Dense calculation

Sparse with ξ=5.10−7

Sparse with ξ=10−6

Sparse with ξ=5.10−6Init

Fuselage problem of 6.5 Mdof dof mapped on 16 processors

The sparse preconditioner setup is 4 times faster than the dense one (19.5 v.s. 89 seconds)

In term of global computing time, the sparse algorithm is about twice faster

The attainable accuracy of the hybrid solver is comparable to the one computed with the

direct solver
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Strong scalability

Numerical scalability
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Hybrid−Dense calculation

Hybrid−Sparse with ξ=5.10−7

Hybrid−Sparse with ξ=10−6

Hybrid−Sparse with ξ=5.10−6

Parallel performance
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Direct calculation
Hybrid−Dense calculation
Hybrid−Sparse with ξ=5.10−7

Hybrid−Sparse with ξ=10−6

Hybrid−Sparse with ξ=5.10−6

Fixed problem size: increasing the # of subdomains =⇒ an increase in the # of iterations

The sparsified variant the most efficient (CPU, memory)
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Exploiting 2-levels of parallelism - motivations

“The numerical improvement”
Classical parallel implementations (1-level ) of DD assign one subdomain per processor

Parallelizing means increasing the number of subdomains

Increasing the number of subdomains often leads to increasing the number of iterations

To avoid this, one can instead of increasing the number of subdomains, keeping it small while
handling each subdomain by more than one processor introducing 2-levels of parallelism

“The parallel performance improvement”
Large 3D systems often require a huge amount of data storage

On SMP node: classical 1-level parallel can only use a subset of the available processors

Thus some processors are “wasted”, as they are “idle” during the computation

The “idle” processors might contribute to the computation and the simulation runs closer to
the peak of per-node performance by using 2-levels of parallelism
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Numerical improvement benefits

Fuselage of 6.5Mdof
# total Algo # # processors/ # iterative

processors subdomains subdomain iter loop time
1-level parallel 16 1 147 77.916 processors
2-level parallel 8 2 98 51.4
1-level parallel 32 1 176 58.1

32 processors 2-level parallel 16 2 147 44.8
2-level parallel 8 4 98 32.5
1-level parallel 64 1 226 54.2
2-level parallel 32 2 176 40.164 processors
2-level parallel 16 4 147 31.3
2-level parallel 8 8 98 27.4

Reduce the number of subdomains =⇒ reduce the number of iterations

Though the subdomain size increases, the time of the iterative loop decreases as:
- The number of iterations decreases
- Each subdomain is handled in parallel
- All the iterative kernels are efficiently computed in parallel

The speedup factors of the iterative loop vary from 1.3 to 1.8

Very attractive especially when the convergence rate depends on the # of subdomains

Might be of great interest when embeded into nonlinear solver
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MaPHyS: Massively Parallel Hybrid Solver

A few comments
Robust algebraic domain decomposition with efficient parallel
behaviour
Trade-off parallel-numerics handled via multi-level parallelism
(suited for clusters of SMPs)
Cheaper memory alternatives through Schur complement
approximation (on going work with Y. Saad)
24 month engineer support from INRIA to consolidate the
prototype (ADT Parallel Scalable Hybrid Library for Large Scale
Simulations: 2009-2011)

Software MaPHyS soon available through
http://solstice.gforge.inria.fr/
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Framework: INRIA associated team / 2008-2010
PhyLeaS objectives: study of Parallel HYbrid sparse LinEAr Solvers

Advent of massively parallel platforms requires new algorithmic designs

Linear solvers are very often used in many large engineering simulations

Direct and iterative approaches have assets and weaknesses: try to
combine them to benefit from both

PhyLeaS partners

Univ. Minnesota, Y. Saad - TU Braunschweig, M. Bollhoefer - INRIA Bacchus, P. Hénon, P. Ramet - INRIA HiePacs, O. Coulaud, L. Giraud,

J. Roman (PI) - INRIA Nachos, S. Lanteri -
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Merci for your attention

Questions ?
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