
 Programming Methodologies
Beyond Petascale,

based on adaptive runtime systems
Laxmikant (Sanjay) Kale

http://charm.cs.uiuc.edu
Parallel Programming Laboratory
Department of Computer Science

University of Illinois at Urbana Champaign

2

Summarizing the State of Art
•  Petascale

–  Very powerful parallel computers are being built
–  Application domains exist that need that kind of power

•  New generation of applications
–  Use sophisticated algorithms
–  Dynamic adaptive refinements
–  Multi-scale, multi-physics

•  Challenge:
–  Parallel programming is more complex than sequential
–  Difficulty in achieving performance that scales to PetaFLOP/S

and beyond
–  Difficulty in getting correct behavior from programs
6/11/09 2 6/11/09 INRIA-NCSA JointLab

Outline
•  Characteristics of new generation of CSE apps

–  Climate modeling, weather prediction:
•  multi-physics, multiscale
•  Adaptively refine regions with “activity” – micro to macro

transfer
–  Epidemiology , economics: model individual behavior and its

impact on macroscopic factors

•  Machine characteristics:
–  large-scale, heterogeneous, accelerators, interconnects,

•  Challenges: resource management,
compositionality

6/11/09 INRIA-NCSA JointLab 3

4

Our Guiding Principles
•  No magic

–  Parallelizing compilers have achieved close to technical
perfection, but are not enough

–  Sequential programs obscure too much information

•  Seek an optimal division of labor between the
system and the programmer

•  Design abstractions based solidly on use-cases
–  Application-oriented yet computer-science centered approach

6/11/09 4 6/11/09 INRIA-NCSA JointLab

Charm++ and CSE Applications

6/11/09 INRIA-NCSA JointLab 5

Enabling CS technology of parallel objects and intelligent run8me
systems has led to several CSE collabora8ve applica8ons

Synergy

Well‐known Biophysics
molecular simula8ons App

Gordon Bell Award, 2002

Computa8onal
Astronomy

Nano‐Materials..

Technical challenges : outline
•  Decomposition challenges

–  Multi-module, multi-paradigm, heterogenity, Compositionality

•  Load balancing and resource management
–  Object based over-decomposition

•  Communication challenges:
–  Asynchronous collectives, topology aware balancers,

•  Scalable Performance analysis and debugging
•  Pre-tuning for future machines

–  And also: tuning without access to the full machine

•  Fault tolerance
•  Languages: simplifying parallel programming
•  Social challenges

6/11/09 INRIA-NCSA JointLab 6

Decomposition Challenges
•  Current method is to decompose to processors

–  Problematic when you have multiple independently developed
modules

–  Multi-paradigm: They may also be implemented using different
paradigms, such as MPI, charm++, UPC, …

–  Even with a single module, deciding which processor does what
work in detail is difficult at large scale

•  Decomposition should be independent of number
of processors
–  Berkeley white paper recently discovered this
–  Our design principle since early 1990’s.

6/11/09 INRIA-NCSA JointLab 7

Challenge: Compositionality
•  It is important to support compositionality

–  For multi-module, multi-physics, multi-paradigm applications..

•  What I mean by parallel composition
–  A || B where A and B are independently developed modules
–  A is parallel module by itself, and so is B
–  Programmers who wrote A were unaware of B and vice versa

•  This is not supported by MPI
–  Developers support it by breaking abstraction boundaries

•  E.g. wildcard recvs in module A to process messages for
module B

–  Nor by OpenMP implementations :

6/11/09 INRIA-NCSA JointLab 8

INRIA-NCSA JointLab 9

Without message-driven execution
(and virtualization), you get either:
Space-division

6/11/09

INRIA-NCSA JointLab 10

OR: Sequentialization

6/11/09

Challenge: heterogeneity
•  Clusters of SMP nodes

–  With SMT to complicate matters further, and SSE
–  Do we need to force programmers to use hybrid model?

•  Accelerators
–  Themselves heterogeneous
–  Cell, GPGPU, Larrabee, FPGAs, ..

•  Objective:
–  try to insulate the programmer from complexity of managing

accelerators
–  At least about which work-unit to run where

6/11/09 INRIA-NCSA JointLab 11

Object based over-decomposition
•  Let

–  the programmer decompose computation into objects
•  Work units, data-units, composites

–  Let an intelligent runtime system assign objects to processors
–  RTS can change this assignment (mapping) during execution

•  Locality of data references is a critical attribute
for performance

•  A parallel object can access only its own data
–  Asynchronous method invocation for accessing other’s data

6/11/09 INRIA-NCSA JointLab 12

Object-based over-decomposition: Charm++

6/11/09 INRIA-NCSA JointLab 13

User View

System implementation

•  Multiple “indexed collections” of C++ objects
•  Indices can be multi-dimensional and/or sparse
•  Programmer expresses communication between objects

–  with no reference to processors

Object-based over-decomposition: AMPI
•  Each MPI process is implemented as a user-level thread
•  Threads are light-weight and migratable!

–  <1 microsecond context switch time, potentially >100k threads per core

•  Each thread is embedded in a charm++ object (chare)

6/11/09 INRIA-NCSA JointLab 14

Real Processors

MPI
processes

Virtual
Processors
(user-level
migratable
threads)

6/11/09 INRIA-NCSA JointLab 15

Why is it suitable for Multi-cores

•  Objects connote and promote locality
•  Message-driven execution

–  A strong principle of prediction for data and code use
–  Much stronger than Principle of locality

•  Can use to scale memory wall:
•  Prefetching of needed data:

–  into scratch pad memories, for example

Scheduler Scheduler
Message Q Message Q

16

Parallel Decomposition and Processors
•  MPI-style encourages

–  Decomposition into P pieces, where P is the number of physical
processors available

–  If your natural decomposition is a cube, then the number of
processors must be a cube

–  …

•  Charm++/AMPI style “virtual processors”
–  Decompose into natural objects of the application
–  Let the runtime map them to processors
–  Decouple decomposition from load balancing

6/11/09 INRIA-NCSA JointLab

17 6/11/09 LSU PetaScale 17

Decomposition independent of numCores

•  Rocket simulation example under traditional MPI vs.
Charm++/AMPI framework

–  Benefit: load balance, communication optimizations,
modularity

Solid

Fluid

Solid

Fluid

Solid

Fluid
. . .

1 2 P

Solid1

Fluid1

Solid2

Fluid2

Solidn

Fluidm
. . .

Solid3
. . .

6/11/09 INRIA-NCSA JointLab

INRIA-NCSA JointLab 18

Parallel Composition: A1; (B || C); A2

Recall: Different modules, written in different
languages/paradigms, can overlap in time
and on processors, without programmer
having to worry about this explicitly

6/11/09

19 6/11/09 19

NAMD: A Production MD program

NAMD
•  Fully featured program
•  NIH-funded development
•  Distributed free of charge

(~20,000 registered users)
•  Binaries and source code
•  Installed at NSF centers
•  User training and support
•  Large published simulations

6/11/09 INRIA-NCSA JointLab

Parallelization using Charm++

6/11/09 INRIA-NCSA JointLab 20

Bhatele, A., Kumar, S., Mei, C., Phillips, J. C., Zheng, G. & Kale, L. V. 2008 Overcoming Scaling
Challenges in Biomolecular Simulations across Multiple Platforms. In Proceedings of IEEE
International Parallel and Distributed Processing Symposium, Miami, FL, USA, April 2008.

6/11/09 INRIA-NCSA JointLab 21

Shallow valleys, high peaks, nicely overlapped PME

green: communication

Red: integration Blue/Purple: electrostatics

turquoise: angle/dihedral

Orange: PME

94% efficiency

Apo-A1, on BlueGene/L, 1024 procs

Charm++’s “Projections” Analysis too

Time intervals on x axis, activity added across
processors on Y axisl

Performance of NAMD

No. of cores

Ti
m

e
(m

s p
er

 st
ep

) STMV: ~1 million atoms

6/11/09 22 INRIA-NCSA JointLab

Blue Gene results based on work
on DCMF many-to-many pattern
by Sameer Kumar, IBM Research

ApoA1: ~92K atoms

Challenge: automated load balancing
•  Static

–  Irregular applications
–  Programmer shouldn’t have to figure out ideal mapping

•  Dynamic:
–  Applications are increasingly using adaptive strategies
–  Abrupt refinements
–  Continuous migration of work: e.g. particles in MD

•  Challenges:
–  Performance limited by most overloaded processor
–  The chance that one processor is severely overloaded gets

higher as #processors increases

6/11/09 INRIA-NCSA JointLab 23

24 6/11/09 IBM 24

Principle of persistence

Computational loads and communication
patterns tend to persist, even in dynamic
computations

So, recent past is a good predictor of near
future

6/11/09 INRIA-NCSA JointLab

25

Measurement-based Load Balancing

Regular
Timesteps

Instrumented
Timesteps

Detailed, aggressive Load
Balancing

Refinement Load
Balancing

6/11/09 INRIA-NCSA JointLab

26

ChaNGa: Parallel Gravity
•  Collaborative project (NSF)

–  with Tom Quinn, Univ. of
Washington

•  Gravity, gas dynamics
•  Barnes-Hut tree codes

–  Oct tree is natural decomp
–  Geometry has better aspect

ratios, so you “open” up fewer
nodes

–  But is not used because it leads
to bad load balance

–  Assumption: one-to-one map
between sub-trees and PEs

–  Binary trees are considered
better load balanced

6/11/09 INRIA-NCSA JointLab

With Charm++: Use Oct-Tree, and let Charm
++ map subtrees to processors

Evolution of Universe and
Galaxy Formation

27

Load balancing with OrbRefineLB

dwarf 5M on 1,024 BlueGene/L processors

5.6s 5.0s

6/11/09 INRIA-NCSA JointLab

Need sophisticated balancers and ability to choose the right ones
automatically

ChaNGa: Parallel Gravity Code

Developed in Collaboration with
Tom Quinn (Univ. Washington)
using Charm++

ChaNGa Preliminary Performance

28

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192

T
i
m
e

p
e
r

I
t
e
r
a
t
i
o
n

(
s
)

Number of Cores

Blue Gene/L
Cray XT3

6/11/09 INRIA-NCSA JointLab

Load balancing for large machines: I
•  Centralized balancers achieve best balance

–  Collect object-communication graph on one processor
–  But won’t scale beyond tens of thousands of nodes

•  Fully distributed load balancers
–  Avoid bottleneck but… Achieve poor load balance
–  Not adequately agile

•  Hierarchical load balancers
–  Careful control of what information goes up and down the

hierarchy can lead to fast, high-quality balancers

•  Need for a universal balancer that works for all
applications

6/11/09 INRIA-NCSA JointLab 29

Load balancing for large machines: II
•  Interconnection topology starts to matter again

–  Was hidden due to wormhole routing etc.
–  Latency variation is still small
–  But bandwidth occupancy is a problem

•  Topology aware load balancers
–  Some general heuristic have shown good performance

•  But may require too much compute power
–  Also, special-purpose heuristic work fine when applicable
–  Still, many open challenges

6/11/09 INRIA-NCSA JointLab 30

31

OpenAtom
Car-Parinello ab initio MD

NSF ITR 2001-2007, IBM

6/11/09 INRIA-NCSA JointLab

Molecular Clusters : Nanowires:

Semiconductor Surfaces: 3D-Solids/Liquids:

G. Martyna (IBM)
M. Tuckerman (NYU)

L. Kale (UIUC)

New OpenAtom Collaboration (DOE)
•  Principle Investigators

–   G
.
 Martyna (IBM TJ Watson)

–  M. Tuckerman (NYU)‏
–  L.V. Kale (UIUC)‏‏
–  K. Schulten (UIUC)‏
–  J. Dongarra (UTK/ORNL)‏

•  Current effort focus
–  QMM

M
v
i
a integration with NAMD2

–  ORNL
Cra
y

•  A unique parallel
decomposition of the Car-
Parinello method.

•  Using Charm++
virtualization, we can
efficiently scale small (32
molecule) systems to
thousands of processors

6/11/09 INRIA-NCSA JointLab 32

Decomposition and Computation Flow

33 6/11/09 INRIA-NCSA JointLab

Topology aware mapping of objects

6/11/09 34 INRIA-NCSA JointLab

Improvements wrought by network topological aware
mapping of computational work to processors

The simulation of the right panel, maps computational work to
processors taking the network connectivity into account while the left
panel simulation does not. The “black’’ or idle time processors spent
waiting for computational work to arrive on processors is
significantly reduced at left. (256waters, 70R, on BG/L 4096 cores)

6/11/09 35 INRIA-NCSA JointLab

OpenAtom: Topology Aware Mapping

6/11/09 36 INRIA-NCSA JointLab

BlueGene/L

Cray XT3

37

Challenge:
Scalable Performance Analysis

6/11/09 INRIA-NCSA JointLab

See: Chee Wai Lee et al, HIPS 2008
(and Chee Wai’s upcoming PhD thesis)

38

Challenge:
How to tune performance when

you don’t have access to
the machine at scale

6/11/09 INRIA-NCSA JointLab

See: BigSim project papers at
http://charm.cs.uiuc.edu

BigSim leverages object-based
virtualization to support such tuning

Raising the Level of Abstraction
•  What we have seen so far, will help:

–  by automating resource management, FT, ..

•  But: parallel interactions are still low-level
–  Programmer has to spend considerable efforts in spelling out

interactions, and data decompositions, in particular

•  Clearly, we need new programming models

6/11/09 INRIA-NCSA JointLab 39

Raising the Level of Abstraction
•  Two metapoints:

–  Need for exploration (don’t standardize too soon)
–  Interoperability

•  Allows a “beachhead” for novel paradigms
•  Long-term: Allow each module to be coded using the

paradigm best suited for it
–  Interoperability requires concurrent composition

•  This may require message-driven execution

6/11/09 INRIA-NCSA JointLab 40

Simplifying Parallel Programming
•  By giving up completeness!

–  A paradigm may be simple, but
•  not suitable for expressing all parallel patterns
•  yet, if it can cover a significant classes of patters (applications,

modules), it is useful
–  A collection of incomplete models, backed by a few complete

ones, will do the trick

•  We must consider: why did many new models fail?
–  HPF could express many array operations succinctly

•  Implementations weren’t always efficient,
•  but even more: everything couldn’t be expressed in it, and it

wasn’t broadly interoperable

•  Our own examples: both outlaw non-determinism
6/11/09 INRIA-NCSA JointLab 41

Simplifying Parallel Programming
•  Our own examples: both outlaw non-determinism

–  Multiphase Shared Arrays (MSA): restricted shared memory
•  LCPC ‘04

–  Charisma: Static data flow among collections of objects
•  LCR’04, HPDC ‘07

6/11/09 INRIA-NCSA JointLab 42

6/11/09 INRIA-NCSA JointLab 43

MSA: Multiphase Shared Arrays
•  In the simple model:
•  A program consists of

–  A collection of Charm threads, and
–  Multiple collections of data-arrays

•  Partitioned into pages
(user-specified)

•  Each array is in one mode at
a time
–  But its mode may change from phase

to phase

•  Modes
–  Write-once
–  Read-only
–  Accumulate
–  Owner-computes

A
B

C C C C

Observations:
General shared address space
abstraction is complex
Certain special cases are
simple, and cover most uses

6/11/09 INRIA-NCSA JointLab 44

Charisma: Static Data Flow
Observation: many CSE applications or
modules involve static data flow in a
fixed network of entities

The amount of data may vary from
iteration to iteration, but who talks to
whom remains unchanged

6/11/09 INRIA-NCSA JointLab 45

NAMD Uses Static Data Flow

6/11/09 INRIA-NCSA JointLab 46

Bhatele, A., Kumar, S., Mei, C., Phillips, J. C., Zheng, G. & Kale, L. V. 2008 Overcoming Scaling
Challenges in Biomolecular Simulations across Multiple Platforms. In Proceedings of IEEE
International Parallel and Distributed Processing Symposium, Miami, FL, USA, April 2008.

6/11/09 INRIA-NCSA JointLab 47

Charisma: Sequential-Parallel Separation

•  Program consists of
–  Orchestration (.or) code

•  Chare arrays declaration
•  Orchestration with parallel

constructs
•  Global flow of control

–  “Physics” code
•  Regular C++
•  User variables
•  Sequential methods

parallel modules parallel

Sequential Modules

6/11/09 INRIA-NCSA JointLab 48

Charisma++ example (Simple)

while (e > threshold)
 forall i in J
 <+e, lb[i], rb[i]> := J[i].compute(rb[i-1],lb[i+1]);

6/11/09 INRIA-NCSA JointLab 49

Mol. Dynamics with Spatial Decomposition

 foreach i,j,k in cells
 <atoms[i,j,k]>:= cells[i,j,k].produceAtoms();

 end-foreach
for iter := 0 to MAX_ITER
 foreach i,j,k,l,m,n in cellpairs
 <+forces[i,j,k]> :=
 cellpairs[i,j,k,l,m,n].coulombForces(atoms[i,j,k],atoms[l,m,n]);
 end-foreach

 foreach i,j,k in cells
 <atoms[i,j,k]> := cells[i,j,k].integrate(forces[i,j,k]);

 end-foreach
end-for

A View of an Interoperable Future

6/11/09 INRIA-NCSA JointLab 50

X10

51

Summary
•  Challenges in Resource management

•  Decomposition and Compositionality
•  Dynamic Load balancing
•  Fault Tolerance

–  Over-decomposition with Adaptive Runtime System helps
–  Scalable Performance analysis, and debugging
–  Early performance tuning (BigSim)

•  Challenges in Raising the level of abstraction
–  Via “Incomplete yet simple” paradigms, and
–  domain-specific frameworks
–  Supported by an interoperable runtime system

•  Exciting times ahead
More Info: http://charm.cs.uiuc.edu /

6/11/09 INRIA-NCSA JointLab

