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Summarizing the State of Art 
•  Petascale  

–  Very powerful parallel computers are being built 
–  Application domains exist that need that kind of power 

•  New generation of applications 
–  Use sophisticated algorithms 
–  Dynamic adaptive refinements 
–  Multi-scale, multi-physics 

•  Challenge:  
–  Parallel programming is more complex than sequential 
–  Difficulty in achieving performance that scales to PetaFLOP/S 

and beyond 
–  Difficulty in getting correct behavior from programs  
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Outline 
•  Characteristics of new generation of CSE apps 

–  Climate modeling, weather prediction:  
•  multi-physics, multiscale 
•  Adaptively refine regions with “activity” – micro to macro 

transfer 
–  Epidemiology , economics: model individual behavior and its 

impact on macroscopic factors 

•  Machine characteristics:   
–  large-scale, heterogeneous, accelerators, interconnects,   

•  Challenges: resource management, 
compositionality 
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Our Guiding Principles 
•  No magic 

–  Parallelizing compilers have achieved close to technical 
perfection, but are not enough 

–  Sequential programs obscure too much information 

•  Seek an optimal division of labor between the 
system and the programmer 

•  Design abstractions based solidly on use-cases 
–  Application-oriented yet computer-science centered approach 
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Charm++ and CSE Applications 
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Enabling CS technology of parallel objects and intelligent run8me 
systems has led to several CSE collabora8ve applica8ons 

Synergy 

Well‐known Biophysics 
molecular simula8ons App  

Gordon Bell Award, 2002 

Computa8onal 
Astronomy 

Nano‐Materials.. 



Technical challenges : outline 
•  Decomposition challenges 

–  Multi-module, multi-paradigm,  heterogenity, Compositionality 

•  Load balancing and resource management 
–  Object based over-decomposition 

•  Communication challenges: 
–  Asynchronous collectives, topology aware balancers, 

•  Scalable Performance analysis and debugging 
•  Pre-tuning for future machines 

–  And also: tuning without access to the full machine 

•  Fault tolerance 
•  Languages: simplifying parallel programming 
•  Social challenges 
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Decomposition Challenges 
•  Current method is to decompose to processors 

–  Problematic when you have multiple independently developed 
modules 

–  Multi-paradigm: They may also be implemented using different 
paradigms, such as MPI, charm++, UPC, … 

–  Even with a single module, deciding which processor does what 
work in detail is difficult at large scale 

•  Decomposition should be independent of number 
of processors 
–  Berkeley white paper recently discovered this 
–  Our design principle since early 1990’s. 
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Challenge: Compositionality 
•  It is important to support compositionality  

–  For multi-module, multi-physics, multi-paradigm applications.. 

•  What I mean by parallel composition 
–  A || B where A and B are independently developed modules 
–  A is parallel module by itself, and so is B 
–  Programmers who wrote A were unaware of B and vice versa 

•  This is not supported by MPI 
–  Developers support it by breaking abstraction boundaries 

•  E.g. wildcard recvs in module A to process messages for 
module B 

–  Nor by OpenMP implementations :  
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Without message-driven execution 
(and virtualization), you get either: 
Space-division 
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OR: Sequentialization 

6/11/09 



Challenge: heterogeneity 
•  Clusters of SMP nodes 

–  With SMT to complicate matters further, and SSE 
–  Do we need to force programmers to use hybrid model? 

•  Accelerators 
–  Themselves heterogeneous 
–  Cell, GPGPU, Larrabee, FPGAs, .. 

•  Objective:  
–  try to insulate the programmer from complexity of managing 

accelerators 
–  At least about which work-unit to run where 

6/11/09 INRIA-NCSA JointLab 11 



Object based over-decomposition 
•  Let  

–  the programmer decompose computation into objects 
•  Work units, data-units, composites 

–  Let an intelligent runtime system assign objects to processors 
–  RTS can change this assignment (mapping) during execution 

•  Locality of data references is a critical attribute 
for performance  

•  A parallel object can access only its own data 
–  Asynchronous method invocation for accessing other’s data 
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Object-based over-decomposition: Charm++ 
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User View 

System implementation 

•  Multiple “indexed collections” of C++ objects 
•  Indices can be multi-dimensional and/or sparse 
•  Programmer expresses communication between objects 

–  with no reference to processors 



Object-based over-decomposition: AMPI 
•  Each MPI process is implemented as a user-level thread 
•  Threads are light-weight and migratable! 

–  <1 microsecond context switch time, potentially >100k threads per core 

•  Each thread is embedded in a charm++ object (chare) 
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Real Processors 

MPI 
processes 

Virtual 
Processors 
(user-level 
migratable 
threads) 



6/11/09 INRIA-NCSA JointLab 15 

Why is it suitable for Multi-cores 

•  Objects connote and promote locality 
•  Message-driven execution 

–  A strong principle of prediction for data and code use 
–  Much stronger than Principle of locality 

•  Can use to scale memory wall: 
•  Prefetching of needed data:  

–  into scratch pad memories, for example 

Scheduler Scheduler 
Message Q Message Q 
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Parallel Decomposition and Processors 
•  MPI-style encourages 

–  Decomposition into P pieces, where P is the number of physical 
processors available 

–  If your natural decomposition is a cube, then the number of 
processors must be a cube 

–  … 

•  Charm++/AMPI style “virtual processors” 
–  Decompose into natural objects of the application 
–  Let the runtime map them to processors 
–  Decouple decomposition from load balancing 
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Decomposition independent of numCores 

•  Rocket simulation example under traditional MPI vs. 
Charm++/AMPI framework 

–  Benefit: load balance, communication optimizations, 
modularity 
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Solid 
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Parallel Composition: A1; (B || C ); A2 

Recall: Different modules, written in different 
languages/paradigms, can overlap in time 
and on processors, without programmer 
having to worry about this explicitly 

6/11/09 
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NAMD: A Production MD program 

NAMD 
•  Fully featured program 
•  NIH-funded development 
•  Distributed free of charge 

(~20,000 registered users) 
•  Binaries and source code 
•  Installed at NSF centers 
•  User training and support 
•  Large published simulations 
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Parallelization using Charm++ 
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Bhatele, A., Kumar, S., Mei, C., Phillips, J. C., Zheng, G. & Kale, L. V. 2008 Overcoming Scaling 
Challenges in Biomolecular Simulations across Multiple Platforms. In Proceedings of IEEE 
International Parallel and Distributed Processing Symposium, Miami, FL, USA, April 2008. 
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Shallow valleys, high peaks, nicely overlapped PME 

green: communication 

Red: integration Blue/Purple: electrostatics 

turquoise: angle/dihedral 

Orange: PME 

94% efficiency 

Apo-A1, on BlueGene/L, 1024 procs 

Charm++’s “Projections” Analysis too 

Time intervals on x axis, activity added across 
processors on Y axisl  



Performance of NAMD 
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Blue Gene results based on work 
on DCMF many-to-many pattern 
by  Sameer Kumar, IBM Research 

ApoA1:  ~92K atoms 



Challenge: automated load balancing 
•  Static 

–  Irregular applications 
–  Programmer shouldn’t have to figure out ideal mapping 

•  Dynamic: 
–  Applications are increasingly using adaptive strategies 
–  Abrupt refinements 
–  Continuous migration of work: e.g. particles in MD 

•  Challenges: 
–  Performance limited by most overloaded processor 
–  The chance that one processor is severely overloaded gets 

higher as #processors increases 
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Principle of persistence 

Computational loads and communication 
patterns tend to persist, even in dynamic 
computations 

So, recent past is a good predictor of near 
future 
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Measurement-based Load Balancing 

Regular 
Timesteps 

Instrumented 
Timesteps 

Detailed, aggressive Load 
Balancing 

Refinement Load 
Balancing 
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ChaNGa: Parallel Gravity 
•  Collaborative project (NSF) 

–  with Tom Quinn, Univ. of 
Washington 

•  Gravity, gas dynamics 
•  Barnes-Hut tree codes 

–  Oct tree is natural decomp 
–  Geometry has better aspect 

ratios, so you “open” up fewer 
nodes 

–  But is not used because it leads 
to bad load balance 

–  Assumption: one-to-one map 
between sub-trees and PEs 

–  Binary trees are considered 
better load balanced 

6/11/09 INRIA-NCSA JointLab 

With Charm++: Use Oct-Tree, and let Charm
++ map subtrees to processors 

Evolution of Universe and 
Galaxy Formation 
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Load balancing with OrbRefineLB 

dwarf 5M on 1,024 BlueGene/L processors 

5.6s 5.0s 

6/11/09 INRIA-NCSA JointLab 

Need sophisticated balancers and ability to choose the right ones 
automatically 



ChaNGa: Parallel Gravity Code 

Developed in Collaboration with 
Tom Quinn (Univ. Washington) 
using Charm++ 

ChaNGa Preliminary Performance 
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Load balancing for large machines: I 
•  Centralized balancers achieve best balance 

–  Collect object-communication graph on one processor 
–  But won’t scale beyond tens of thousands of nodes 

•  Fully distributed  load balancers 
–  Avoid bottleneck but… Achieve poor load balance 
–  Not adequately agile 

•  Hierarchical load balancers 
–  Careful control of what information goes up and down the 

hierarchy can lead to fast, high-quality balancers 

•  Need for a universal balancer that works for all 
applications 
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Load balancing for large machines: II 
•  Interconnection topology starts to matter again 

–  Was hidden due to wormhole routing etc.  
–  Latency variation is still small 
–  But bandwidth occupancy is a problem 

•  Topology aware load balancers 
–  Some general heuristic have shown good performance 

•  But may require too much compute power 
–  Also, special-purpose heuristic work fine when applicable 
–  Still, many open challenges 
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OpenAtom 
Car-Parinello ab initio MD 

NSF ITR 2001-2007, IBM 
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Molecular Clusters : Nanowires: 

Semiconductor Surfaces: 3D-Solids/Liquids: 

G. Martyna (IBM)  
M. Tuckerman (NYU) 

L. Kale (UIUC) 



New OpenAtom Collaboration (DOE) 
•  Principle Investigators  

–   G
.
 Martyna (IBM TJ Watson)  

–  M. Tuckerman (NYU)‏ 
–  L.V. Kale (UIUC)‏‏ 
–  K. Schulten (UIUC)‏ 
–  J. Dongarra (UTK/ORNL)‏ 

•  Current effort focus  
–  QMM

M 
v
i
a integration with NAMD2 

–  ORNL 
Cra
y

•  A unique parallel 
decomposition of the Car-
Parinello method.   

•  Using Charm++ 
virtualization, we can 
efficiently scale small (32 
molecule) systems to 
thousands of processors 
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Decomposition and Computation Flow 
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Topology aware mapping of objects 
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Improvements wrought by network  topological aware 
mapping of computational work to processors 

The simulation of the right panel, maps computational work to 
processors taking the network connectivity into account while the left 
panel simulation does not. The “black’’ or idle time processors spent 
waiting for computational work to arrive on processors is 
significantly reduced at left. (256waters, 70R, on BG/L 4096 cores) 
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OpenAtom: Topology Aware Mapping  
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BlueGene/L 

Cray XT3 
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Challenge:  
Scalable Performance Analysis 
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See: Chee Wai Lee et al, HIPS 2008 
(and Chee Wai’s upcoming PhD thesis)  
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Challenge: 
How to tune performance when  

you don’t have access to  
the machine at scale 
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See: BigSim project papers at 
http://charm.cs.uiuc.edu 

BigSim leverages object-based 
virtualization to support  such tuning 



Raising the Level of Abstraction 
•  What we have seen so far,  will help: 

–  by automating resource management, FT, .. 

•  But: parallel interactions are still low-level 
–  Programmer has to spend considerable efforts in spelling out 

interactions,  and data decompositions, in particular 

•  Clearly, we need new programming models 
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Raising the Level of Abstraction 
•  Two metapoints: 

–  Need for exploration (don’t standardize too soon) 
–  Interoperability 

•  Allows a “beachhead” for novel paradigms 
•  Long-term: Allow each module to be coded using the 

paradigm best suited for it 
–  Interoperability requires concurrent composition 

•  This may require message-driven execution 
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Simplifying Parallel Programming 
•  By giving up completeness! 

–  A paradigm may be simple, but  
•  not suitable for expressing all parallel patterns 
•  yet, if it can cover a significant classes of patters (applications, 

modules), it is useful 
–  A collection of incomplete models, backed by a few complete 

ones, will do the trick 

•  We must consider: why did many new models fail? 
–  HPF could express many array operations succinctly 

•  Implementations weren’t always efficient,  
•  but even more: everything couldn’t be expressed in it, and it 

wasn’t broadly interoperable 

•  Our own examples: both outlaw non-determinism 
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Simplifying Parallel Programming 
•  Our own examples: both outlaw non-determinism 

–  Multiphase Shared Arrays (MSA): restricted shared memory 
•  LCPC ‘04 

–  Charisma: Static data flow among collections of objects 
•  LCR’04, HPDC ‘07 
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MSA: Multiphase Shared Arrays  
•  In the simple model: 
•  A program consists of  

–  A collection of Charm threads, and  
–  Multiple collections of data-arrays 

•  Partitioned into pages          
(user-specified) 

•  Each array is in one mode at 
a time 
–  But its mode may change from phase 

to phase 

•  Modes 
–  Write-once 
–  Read-only 
–  Accumulate 
–  Owner-computes 

A 
B 

C C C C 

Observations: 
General shared address space 
abstraction is complex 
Certain special cases are 
simple, and cover most uses 
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Charisma: Static Data Flow 
Observation: many CSE applications  or 
modules involve static data flow in a 
fixed network  of entities 

The amount of data may vary from 
iteration to iteration, but who talks to 
whom  remains unchanged 
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NAMD Uses Static Data Flow 
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Bhatele, A., Kumar, S., Mei, C., Phillips, J. C., Zheng, G. & Kale, L. V. 2008 Overcoming Scaling 
Challenges in Biomolecular Simulations across Multiple Platforms. In Proceedings of IEEE 
International Parallel and Distributed Processing Symposium, Miami, FL, USA, April 2008. 
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Charisma: Sequential-Parallel Separation 

•  Program consists of 
–  Orchestration (.or) code 

•  Chare arrays declaration 
•  Orchestration with parallel 

constructs 
•  Global flow of control 

–  “Physics” code  
•  Regular C++ 
•  User variables  
•  Sequential methods 

parallel modules parallel 

Sequential Modules 
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Charisma++ example (Simple) 

while (e > threshold) 
    forall i in J 
      <+e, lb[i], rb[i]> :=  J[i].compute(rb[i-1],lb[i+1]); 
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Mol. Dynamics with Spatial Decomposition 

 foreach i,j,k in cells 
     <atoms[i,j,k]>:= cells[i,j,k].produceAtoms(); 

 end-foreach 
for iter := 0 to MAX_ITER 
    foreach i,j,k,l,m,n in cellpairs 
        <+forces[i,j,k]> := 
             cellpairs[i,j,k,l,m,n].coulombForces(atoms[i,j,k],atoms[l,m,n]); 
    end-foreach 

    foreach i,j,k in cells 
  <atoms[i,j,k]> :=  cells[i,j,k].integrate(forces[i,j,k]); 

    end-foreach 
end-for 



A View of an Interoperable Future 
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X10 
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Summary 
•  Challenges in Resource management 

•  Decomposition and Compositionality 
•  Dynamic Load balancing 
•  Fault Tolerance 

–  Over-decomposition with Adaptive Runtime System helps 
–  Scalable Performance analysis, and debugging 
–  Early performance tuning  ( BigSim) 

•  Challenges in Raising the level of abstraction 
–  Via “Incomplete yet simple” paradigms, and  
–  domain-specific frameworks  
–  Supported by an interoperable runtime system 

•  Exciting times ahead 
More Info: http://charm.cs.uiuc.edu / 
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