ry
CAPS

INnNnovative fools for @ New paradigm

Dealing with Heterogeneous Multicores

Francois Bodin

INRIA-UIUC, June 12%, 2009



H =
Introduction

= Main stream applications will rely on new
multicore / manycore architectures
o It is about performance not parallelism

= Various heterogeneous hardware
* General purpose cores
* Application specific cores — GPU (HWA)

= HPC and embedded applications are increasingly
sharing characteristics

e/ 4
CAPLPS INRIA-UIUC, June 2009



Manycore Architectures

CAPS

General purpose cores
e Share a main memory
o Core ISA provides fast SIMD
instructions
Streaming engines / DSP / FPGA

o Application specific architectures
(“narrow band")

e Vector/SIMD
e Can be extremely fast
Hundreds of GigaOps
e But not easy to take advantage of

* One platform type cannot satisfy
everyone

Upload
remote

HWA

data

Download
remote data

Application
data

Remote
Procedure call

Stream cores

Operation/Watt is the efficiency scale

ry
INRIA-UIUC, June 2009



H =
Multicore/Manycore Workload

= Multiple applications sharing the hardware

e Multimedia, game, encryption, security, health, ...

Unfriendly environment with many competitions
» Global resource allocation, no warranty on availability

e Must be taken into account when programming/compiling

Applications cannot always be recompiled

* Most applications are distributed as binaries

= A binary will have to run on many platforms

» Forward scalability or “write once, run faster on new hardware”

» Loosing performance is not an option

ry’

CA PS INRIA-UIUC, June 2009



Multiple Parallelism Levels

()

= Amdahl’s law is forever, all levels of parallelism
need to be exploited
e Hybrid parallelism needed

= Programming various hardware components of a
node cannot be done separately

local memory
A

shared memory
A

shared memory
A

A 4

4

A

y

4

A

y

HWA1

core

core

HWA2

A
A 4

local memory

ry

CAPS

network

Threads
Message Passing

INRIA-UIUC, June 2009

local memory
A
A 4
<
| — ;
T
Stream programming
Al
<
| < G—(
=
T
A
A 4
local memory




The Past of Parallel Computing, -

the Future of Manycores?

= The Past

 Scientific computing focused

e Microprocessor or vector based, homogeneous
architectures

e Trained programmers willing to pay effort for
performance

e Fixed execution environments

= The Future

 New applications (multimedia, medical, ...)
* Thousands of heterogeneous systems configurations
e Unfriendly execution environments

ry

CA Ps INRIA-UIUC, June 2009



H =
Manycore = Numerous Configurations

= Heterogeneity brings a lot of configurations
Proc. x Nb Cores x HWA x Mem. Sys.

1000s of configurations

= Code optimization strategy may differ from one
configuration to another

Is it possible to make a single (a few) binary that
will run efficiency on a large set of
configurations?

r’

CA PS INRIA-UIUC, June 2009



H =
Asymmetric Behavior Issue

= Cannot assume that all cores with same ISA
provide equal performance

» Core frequency/voltage throttling can change
computing speed of some cores
= e.g. Nehalem “turbo mode”
* Simple (in order) versus complex (out-of-order) cores

o Data locality effects

How to deal with non homogeneous core
behavior?

ry’

CA Ps INRIA-UIUC, June 2009



Manycore = .

Multiple y-Architectures

= Each p-architecture requires different code generation/
optimization strategies
* Not one compiler in many cases

= High performance variance between implementations
e ILP, GPCore/TLP, HWA

= Dramatic effect of tuning
» Bad decisions have a strong effect on performance
» Efficiency is very input parameter dependent
o Data transfers for HWA add a lot of overheads

How to organize the compilation flow?

ry’

CA PS INRIA-UIUC, June 2009



CAPS Compiler Flow =
for Heterogeneous Targets

HMPP annotated
= Dealing with Ej -

various ISAs

HMPP runtime

= Not all code g

generation can be @@L .
performed in the target | HMPP

Sa m e fra m eWO r k Generic host
compiler
Target codelet

Hardware vendor
compiler
Binary host o

application Dynamic library
| HMP HMPP codelet

7 4
CAPLPS INRIA-UIUC, June 2009



Heterogeneous Tuning Issue Example

#pragma hmpp
#pragma hmpp
#pragma hmpp
#pragma hmpp
#pragma hmpp
#pragma hmpp

astex_codelet__1 codelet &
astex_codelet__1 , args[c].io=in &
astex_codelet 1 , args[v].io=inout &
astex_codelet__1 , args[u].io=inout &
astex_codelet__1 , target=CUDA &
astex_codelet__1 , version=1.4.0

void astex_codelet__1(float u[256][256][256], float v[256][256][256], float c[256][256][256],

const int K, const float x2){

astex_thread_begin: {

for (int it = 0 ; it < K ; ++it){
for (int i2 =1 ; i2 < 256 - 1 ; ++i2){
for (int i3 =1 ; i3 < 256 - 1 ; ++i3){
for (int il =1 ; il < 256 - 1 ; ++il){
float coeff = c[i3][i2][1il1l] * c[i3][i2][il] * x2;
float sum = u[i3][i2][il + 1] + u[i3][i2][il - 1
sum += u[i3][i2 + 1][il] + u[i3][i2 - 1][il];
sum += u[i3 + 1][i2][4i1] + u[i3 - 1][i2][il];
v[i3][i2][il] = (2. - 6. * coeff) * u[i3][i2

}
}
}

for (int i2 =1
for (int i3 =
for (int il

Need interchange
If aims at NVIDIA GPU

il] + coeff * sum - v[i3][i2][il];

i2 < 256 - 1 ; ++i2){
; i3 < 256 - ; ++i3){
1 ; il < 256 1 ; ++i1{

o=~
[

}astex_thread_end:;

/ 4

}
CAPS

INRIA-UIUC, June 2009



H =
Varying Available Resources

= Available hardware resources are changing over
the execution time

* Not all resources are time-shared, e.g. a HWA may
not be available

e Data affinity must be respected

How to ensure that conflicts in resource usage will
not lead to global performance degradation?

ry’

CA PS INRIA-UIUC, June 2009



H =
OpenMP in Unfriendly Environment

= OpenMP programs performance is strongly
degraded when sharing resources

o Example with NAS parallel benchmark, 2 cores, one
rogue application using one of the core

e Best loop scheduling strategy not |dent|cal on loaded

Appl -Tread2

or unloaded machine pp1-Tread
180 @
160
140 L1 Cache L1 Cache
1200 o 1

1000

®static L2 Cache

800

¥ Static + Rogue i
®Dynamic8 + Rog}Je

QQQQQQQQQ

" Adapt10 + Rogue 1

Main Memory

600

400

200

éARS MG sp gr INRIAEHC, June 2009 UA




Peak Performance is Not the Goal

= Maximizing the Return on Investment

A Performance

>
Y/ 4 Resources, cores

CA Ps INRIA-UIUC, June 2009




Difficult Decisions Making with Alternative -

Codes (Multiversioning)

= Various implementations of routines are
available or can be generated for a given target

« CUBLAS, MKL, ATLAS, ...
e SIMD instructions, GPcore, HWA, Hybrid

= No strict performance order

« Each implementation has a different performance
profile

e Best choice depends on platform and runtime
parameters

= Decision is a complex issue
 How to produce the decision?

ry’

CA Ps INRIA-UIUC, June 2009



lllustrating Example:
Dealing with Multiple BLAS Implementations

= Runtime selection of DGEMM in
High Performance Linpack

. Intel(R) Xeon(R) E5420 @ 2.50GHz
e CUBLAS - Tesla C1060, Intel MKL

= Three binaries of the application
= Static linking with CUBLAS
= Static linking with MKL
= Library mix with selection of routine at runtime
= Automatically generated using CAPS tooling
= Three hardware resource configurations
= GPU + 1, 2, and 4 cores used for MKL

ry’

CA PS INRIA-UIUC, June 2009




Performance Using One Core

= Performance in Gigaflops
= 4 problem sizes: 64, 500, 1200, 8000

23 23,3
20

)
a
(@]
T 15
S
©
‘s‘ B Cublas
£ 10 " MKL
2 " Dyn. Sel.
[}]
o

5

0 4

64 500 1200 8000
ry Problem Size

CA PS INRIA-UIUC, June 2009



H =
Performance Using Four Cores

)

o

(o]

|

i

S

)

§ ®Cublas
€ = MKL
'g = Dyn. Sel.
o

o

64 500 1200 8000

Problem Size

ry’

CA PS INRIA-UIUC, June 2009



The Challenges

= Programming
e Medium

= Resources management
e Medium

= Application deployment
e Hard

= Portable performance
o Extremely hard

r’

CA Ps INRIA-UIUC, June 2009

application




Re

search Directions

New Languages
o X10, Fortress, Chapel, PGAS languages, OpenCL, MS Axum, ...

Libraries
o Atlas, MKL, Global Array, Spiral, Telescoping languages, TBB, ...
Compilers
o Classical compiler flow needs to be revisited
» Acknowledge lack of static performance model
» Adaptative code generation
OS
 Virtualization/hypervisors
Architectures

e Integration on the chip of the accelerators
= AMD Fusion, ...

e Alleviate data transfers costs

Key for the
short/mid

term

&% -~ PCI Gen 3, ...

CAPS

INRIA-UIUC, June 2009




Directives Based Approach for
Hardware Accelerators (HWA)

= Directives
e Do not require a new programming language
o Already state of the art approach (e.g. OpenMP)
o Keep incremental development possible

« Avoid exit cost
= Does not address very large scale parallelism
e But this is not (yet) the issue for multicore nodes
= Path chosen by CAPS entreprise
e Heterogeneous Multicore Parallel Programming (HMPP)
* Centered on the codelet / pure function concept

e Focus on CPU — GPU communications optimizations
o Complementary to OpenMP and MPI

r’

CA PS INRIA-UIUC, June 2009



What is Missing in OpenMP for HWA

= Remote Procedure Call (RPC) on a HWA

e Code generation for GPU, ...
e Hardware resource management

= Dealing with non shared address space

o Explicit communications management to optimize the
data transfers between main the CPU and the HWA

r’

CA Ps INRIA-UIUC, June 2009



HMPP1.5 Simple Example

#ipragma hmpp sgemmlabel codelet, target=CUDA, args[vout].io=inout]|
extern void sgemm( int m, int n, int k, float alpha,
const float wvinl[n][n], const float vin2[n] [n],
float beta, float vout[n][n] )

int main(int argc, char **argv) ({

for( 3 =0 ; J< 2 ; j++ ) {
(i pragma hmpp sgemmlabel callsite]
sgemm( size, size, size, alpha, vinl, vin2, beta, vout );

}

>

ﬁpragma hmpp label codelet, target=CUDA:BROOK, args[vl].io=out
#fpragma hmpp label2 codelet, target=SSE, args[vl].io=out, cond=“"n<800"“ |
void MyCodelet(int n, float vl[n], float v2[n], float v3[n])
{ int 1;
for (1 =0 ; 1 < n ; i++) {
vl[i] = v2[i] + v3[i];
}

}

CAr-ro



Group of Codelets (HMPP 2.0)

- Several callsites
grouped in a sequence
corresponding to a
given device

= Memory allocated for
all arguments of all
codelets

= Allow for resident data
but no consistency
management

ry

CPU

Array

CA PS INRIA-UIUC, June 2009

Allocate

GPU

group of codelets

Array

codeletl

codelet2



Optimizing Communications

= Exploit two properties
e Communication / computation overlap
 Temporal locality of RPC parameters

= Various techniques

» Advancedload and Delegatedstore
e Constant parameter
e Resident data

e Actual argument mapping

r’

CA PS INRIA-UIUC, June 2009



Advancedload Directive

= Avoid reloading constant data

int main(int argc, char **argv) ({

#pragma hmpp simple advancedload, args[v2] ,

for (3j=0; j<n; j++){
#pragma hmpp simple callsite, args[v2].advancedload=true
simplefuncl(n,tl[j], t2, t3[3j], alpha);
}
#pragma hmpp label release

}

\
t2 is not reloaded at each loop iteration

r’

CA PS INRIA-UIUC, June 2009



H =
Actual Argument Mapping

= Allocate arguments of various codelets to the same
memory space

= Allow to exploit reuses of argument to reduce
communications

= Close to equivalence in Fortran

#pragma hmpp <mygp> groun. target=CIIDA
#pragma hmpp <mygp>| map, args[fl::inm; f2::inm£

#pragma hmpp <mygp> f1l codelet, args[outv].io=inout
static void matvecl (int sn, int sm,
float inv[sn],[float inm[sn][sm]} float outv[sm])

{

Arguments shal

} the same space
#pragma hmpp <mygp> £2 codelet, args[v2].io=inout on the HWA
static void otherfunc2 (int sn, int =sm_

float v2[sn], f{loat inm[sn][sm])]

CAPS INRIA-UIUC, June 2009 5

e



o e
Conclusion

= Multicore ubiquity is going to have a large impact on
software industry
* New applications but many new issues

= Will one parallel model fit all?
e Surely not but multi languages programming should be avoided

» Directive based programming is a safe approach
o Ideally OpenMP will be extended to HWA

= Toward Adaptative Parallel Programming
o Compiler alone cannot solve it
o Compiler must interact with the runtime environment
* Programming must help expressing global strategies / patterns
o Compiler as provider of basic implementations

» Offline-Online compilation has to be revisited
ry

CA Ps INRIA-UIUC, June 2009




