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Introduction 

  Main stream applications will rely on new 
multicore / manycore architectures  
•  It is about performance not parallelism 

  Various heterogeneous hardware  
•  General purpose cores 
•  Application specific cores – GPU (HWA) 

  HPC and embedded applications are increasingly 
sharing characteristics 
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Manycore Architectures 

  General purpose cores 
•  Share a main memory 
•  Core ISA provides fast SIMD 

instructions 

  Streaming engines / DSP / FPGA 
•  Application specific architectures 

(“narrow band”) 
•  Vector/SIMD 
•  Can be extremely fast 

  Hundreds of GigaOps  
•  But not easy to take advantage of 
•  One platform type cannot satisfy 

everyone 

  Operation/Watt is the efficiency scale 
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Multicore/Manycore Workload 

  Multiple applications sharing the hardware 
•  Multimedia, game, encryption, security, health, … 

  Unfriendly environment with many competitions 
•  Global resource allocation, no warranty on availability 

•  Must be taken into account when programming/compiling 

  Applications cannot always be recompiled 
•  Most applications are distributed as binaries 

  A binary will have to run on many platforms 
•  Forward scalability or “write once, run faster on new hardware” 

•  Loosing performance is not an option 
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Multiple Parallelism Levels 
  Amdahl’s law is forever, all levels of parallelism 

need to be exploited 
•  Hybrid parallelism needed 

  Programming various hardware components of a 
node cannot be done separately  
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The Past of Parallel Computing,  
the Future of Manycores? 

  The Past 
•  Scientific computing focused 
•  Microprocessor or vector based, homogeneous 

architectures 
•  Trained programmers willing to pay effort for 

performance 
•  Fixed execution environments 

  The Future 
•  New applications (multimedia, medical, …) 
•  Thousands of heterogeneous systems configurations 
•  Unfriendly execution environments 
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Manycore = Numerous Configurations 

  Heterogeneity brings a lot of configurations 
Proc. x Nb Cores x HWA x Mem. Sys.  

=  
1000s of configurations 

  Code optimization strategy may differ from one 
configuration to another 

Is it possible to make a single (a few) binary that 
will run efficiency on a large set of 

configurations?  
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Asymmetric Behavior Issue 

  Cannot assume that all cores with same ISA 
provide equal performance 
•  Core frequency/voltage throttling can change 

computing speed of some cores 
  e.g. Nehalem “turbo mode” 

•  Simple (in order) versus complex (out-of-order) cores 
•  Data locality effects 
•  … 

How to deal with non homogeneous core 
behavior? 

INRIA-UIUC, June 2009 



Manycore =  
Multiple µ-Architectures 

  Each μ-architecture requires different code generation/
optimization strategies 
•  Not one compiler in many cases 

  High performance variance between implementations 
•  ILP, GPCore/TLP, HWA 

  Dramatic effect of tuning 
•  Bad decisions have a strong effect on performance  
•  Efficiency is very input parameter dependent 
•  Data transfers for HWA add a lot of overheads 

How to organize the compilation flow? 
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CAPS Compiler Flow  
for Heterogeneous Targets 

  Dealing with 
various ISAs 

  Not all code 
generation can be 
performed in the 
same framework  
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Heterogeneous Tuning Issue Example  
#pragma hmpp astex_codelet__1 codelet &

#pragma hmpp astex_codelet__1 , args[c].io=in &

#pragma hmpp astex_codelet__1 , args[v].io=inout &

#pragma hmpp astex_codelet__1 , args[u].io=inout &

#pragma hmpp astex_codelet__1 , target=CUDA &

#pragma hmpp astex_codelet__1 , version=1.4.0

void astex_codelet__1(float u[256][256][256], float v[256][256][256], float c[256][256][256], 

                      const int K, const float x2){

 astex_thread_begin:{   

  for (int it = 0 ; it < K ; ++it){       

    for (int i2 = 1 ; i2 < 256 - 1 ; ++i2){  

      for (int i3 = 1 ; i3 < 256 - 1 ; ++i3){         

        for (int i1 = 1 ; i1 < 256 - 1 ; ++i1){

          float  coeff = c[i3][i2][i1] * c[i3][i2][i1] * x2;

          float  sum = u[i3][i2][i1 + 1] + u[i3][i2][i1 - 1];

          sum += u[i3][i2 + 1][i1] + u[i3][i2 - 1][i1];

          sum += u[i3 + 1][i2][i1] + u[i3 - 1][i2][i1];

          v[i3][i2][i1] = (2. - 6. * coeff) * u[i3][i2][i1] + coeff * sum - v[i3][i2][i1];

        }             

      }    

    }       

    for (int i2 = 1 ; i2 < 256 - 1 ; ++i2){

      for (int i3 = 1 ; i3 < 256 - 1 ; ++i3){

        for (int i1 = 1 ; i1 < 256 - 1 ; ++i1{

        

        . . . . .           

 }astex_thread_end:;

}


Need interchange 
If aims at NVIDIA GPU 
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Varying Available Resources 

  Available hardware resources are changing over 
the execution time 
•  Not all resources are time-shared, e.g. a HWA may 

not be available 
•  Data affinity must be respected 

How to ensure that conflicts in resource usage will 
not lead to global performance degradation? 
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OpenMP in Unfriendly Environment 
  OpenMP programs performance is strongly 

degraded when sharing resources 
•  Example with NAS parallel benchmark, 2 cores, one 

rogue application using one of the core 
•  Best loop scheduling strategy not identical on loaded 

or unloaded machine 
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Peak Performance is Not the Goal 

  Maximizing the Return on Investment 
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Difficult Decisions Making with Alternative 
Codes (Multiversioning) 

  Various implementations of routines are 
available or can be generated for a given target 
•  CUBLAS, MKL, ATLAS, … 
•  SIMD instructions, GPcore, HWA, Hybrid 

  No strict performance order  
•  Each implementation has a different performance 

profile 
•  Best choice depends on platform and runtime 

parameters 

  Decision is a complex issue 
•  How to produce the decision? 
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Illustrating Example: 
Dealing with Multiple BLAS Implementations 

  Runtime selection of DGEMM in  
  High Performance Linpack 
•  Intel(R) Xeon(R) E5420 @ 2.50GHz 
•  CUBLAS - Tesla C1060, Intel MKL 

  Three binaries of the application 
  Static linking with CUBLAS 
  Static linking with MKL 
  Library mix with selection of routine at runtime 

  Automatically generated using CAPS tooling 

  Three hardware resource configurations 
  GPU + 1, 2, and 4 cores used for MKL 
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Performance Using One Core 

  Performance in Gigaflops 
  4 problem sizes: 64, 500, 1200, 8000 
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Performance Using Four Cores 
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The Challenges 

  Programming 
•  Medium 

  Resources management 
•  Medium 

  Application deployment 
•  Hard 

  Portable performance 
•  Extremely hard 
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Research Directions 

  New Languages 
•  X10, Fortress, Chapel, PGAS languages, OpenCL, MS Axum, … 

  Libraries 
•  Atlas, MKL, Global Array, Spiral, Telescoping languages, TBB, … 

  Compilers 
•  Classical compiler flow needs to be revisited 
•  Acknowledge lack of static performance model 
•  Adaptative code generation 

  OS 
•  Virtualization/hypervisors 

  Architectures 
•  Integration on the chip of the accelerators 

  AMD Fusion, … 

•  Alleviate data transfers costs 
  PCI Gen 3x, … 

Key for the 
short/mid 

term 
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Directives Based Approach for  
Hardware Accelerators (HWA) 
  Directives  

•  Do not require a new programming language 
•  Already state of the art approach (e.g. OpenMP) 
•  Keep incremental development possible 
•  Avoid exit cost 

  Does not address very large scale parallelism 
•  But this is not (yet) the issue for multicore nodes 

  Path chosen by CAPS entreprise 
•  Heterogeneous Multicore Parallel Programming (HMPP) 
•  Centered on the codelet / pure function concept 
•  Focus on CPU – GPU communications optimizations 
•  Complementary to OpenMP and MPI 
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What is Missing in OpenMP for HWA 

  Remote Procedure Call (RPC) on a HWA 
•  Code generation for GPU, … 
•  Hardware resource management 

  Dealing with non shared address space 
•  Explicit communications management to optimize the 

data transfers between main the CPU and the HWA 
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HMPP1.5 Simple Example 
#pragma hmpp sgemmlabel codelet, target=CUDA, args[vout].io=inout 
extern void sgemm( int m, int n, int k, float alpha,  
                   const float vin1[n][n], const float vin2[n][n],  
                   float beta, float vout[n][n] ); 

int main(int argc, char **argv) { 
… 
 for( j = 0 ; j < 2 ; j++ ) {       
#pragma hmpp sgemmlabel callsite 
    sgemm( size, size, size, alpha, vin1, vin2, beta, vout );  
 } 

#pragma hmpp label codelet, target=CUDA:BROOK, args[v1].io=out 
#pragma hmpp label2 codelet, target=SSE, args[v1].io=out, cond=“n<800“ 
void MyCodelet(int n, float v1[n],  float v2[n], float v3[n])  
{ int i; 
  for (i = 0 ; i < n ; i++) { 
    v1[i] = v2[i] + v3[i]; 
  } 
} 
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Group of Codelets (HMPP 2.0) 

INRIA-UIUC, June 2009 

•  Several callsites 
grouped in a sequence 
corresponding to a 
given device 

  Memory allocated for 
all arguments of all 
codelets 

  Allow for resident data 
but no consistency 
management 



Optimizing Communications 

  Exploit two properties 
•  Communication / computation overlap 
•  Temporal locality of RPC parameters 

  Various techniques 
•  Advancedload and Delegatedstore 
•  Constant parameter 
•  Resident data 
•  Actual argument mapping 
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Advancedload Directive 

  Avoid reloading constant data 

t2 is not reloaded at each loop iteration


int main(int argc, char **argv) { 
… 
#pragma hmpp simple advancedload, args[v2], const 
  for (j=0; j<n; j++){ 
#pragma hmpp simple callsite, args[v2].advancedload=true 
    simplefunc1(n,t1[j], t2, t3[j],  alpha); 
   } 
#pragma hmpp label release 
… 
} 
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#pragma hmpp <mygp> group, target=CUDA 
#pragma hmpp <mygp> map,   args[f1::inm; f2::inm] 

#pragma hmpp <mygp> f1 codelet, args[outv].io=inout 
static void matvec1(int sn, int sm, 

   float inv[sn], float inm[sn][sm], float outv[sm]) 
{ 
  ... 
} 
#pragma hmpp <mygp> f2 codelet, args[v2].io=inout 
static void otherfunc2(int sn, int sm, 

   float v2[sn], float inm[sn][sm]) 
{ 
  ... 
} 

Actual Argument Mapping 
  Allocate arguments of various codelets to the same 

memory space 
  Allow to exploit reuses of argument to reduce 

communications 
  Close to equivalence in Fortran 
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Conclusion 
  Multicore ubiquity is going to have a large impact on 

software industry 
•  New applications but many new issues 

  Will one parallel model fit all? 
•  Surely not but multi languages programming should be avoided 
•  Directive based programming is a safe approach 
•  Ideally OpenMP will be extended to HWA 

  Toward Adaptative Parallel Programming 
•  Compiler alone cannot solve it 
•  Compiler must interact with the runtime environment 
•  Programming must help expressing global strategies / patterns 
•  Compiler as provider of basic implementations 
•  Offline-Online compilation has to be revisited 
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