
Dealing with Heterogeneous Multicores

François Bodin

INRIA-UIUC, June 12th, 2009

Introduction

  Main stream applications will rely on new
multicore / manycore architectures
•  It is about performance not parallelism

  Various heterogeneous hardware
•  General purpose cores
•  Application specific cores – GPU (HWA)

  HPC and embedded applications are increasingly
sharing characteristics

INRIA-UIUC, June 2009

Manycore Architectures

  General purpose cores
•  Share a main memory
•  Core ISA provides fast SIMD

instructions

  Streaming engines / DSP / FPGA
•  Application specific architectures

(“narrow band”)
•  Vector/SIMD
•  Can be extremely fast

  Hundreds of GigaOps
•  But not easy to take advantage of
•  One platform type cannot satisfy

everyone

  Operation/Watt is the efficiency scale

Main
Memory

Application
data

General
Purpose
Processor
Cores

HWA

Application
data

Stream cores

Upload
remote
data

Download
remote data

Remote
Procedure call

INRIA-UIUC, June 2009

Multicore/Manycore Workload

  Multiple applications sharing the hardware
•  Multimedia, game, encryption, security, health, …

  Unfriendly environment with many competitions
•  Global resource allocation, no warranty on availability

•  Must be taken into account when programming/compiling

  Applications cannot always be recompiled
•  Most applications are distributed as binaries

  A binary will have to run on many platforms
•  Forward scalability or “write once, run faster on new hardware”

•  Loosing performance is not an option

INRIA-UIUC, June 2009

Multiple Parallelism Levels
  Amdahl’s law is forever, all levels of parallelism

need to be exploited
•  Hybrid parallelism needed

  Programming various hardware components of a
node cannot be done separately

core

shared memory

ne
tw

or
k

core

shared memory
local memory

HW
A1

local memory

HW
A2

local memory

HW
A1

local memory

HW
A2

Threads

Message Passing

Stream programming

INRIA-UIUC, June 2009

The Past of Parallel Computing,
the Future of Manycores?

  The Past
•  Scientific computing focused
•  Microprocessor or vector based, homogeneous

architectures
•  Trained programmers willing to pay effort for

performance
•  Fixed execution environments

  The Future
•  New applications (multimedia, medical, …)
•  Thousands of heterogeneous systems configurations
•  Unfriendly execution environments

INRIA-UIUC, June 2009

Manycore = Numerous Configurations

  Heterogeneity brings a lot of configurations
Proc. x Nb Cores x HWA x Mem. Sys.

=
1000s of configurations

  Code optimization strategy may differ from one
configuration to another

Is it possible to make a single (a few) binary that
will run efficiency on a large set of

configurations?
INRIA-UIUC, June 2009

Asymmetric Behavior Issue

  Cannot assume that all cores with same ISA
provide equal performance
•  Core frequency/voltage throttling can change

computing speed of some cores
  e.g. Nehalem “turbo mode”

•  Simple (in order) versus complex (out-of-order) cores
•  Data locality effects
•  …

How to deal with non homogeneous core
behavior?

INRIA-UIUC, June 2009

Manycore =
Multiple µ-Architectures

  Each μ-architecture requires different code generation/
optimization strategies
•  Not one compiler in many cases

  High performance variance between implementations
•  ILP, GPCore/TLP, HWA

  Dramatic effect of tuning
•  Bad decisions have a strong effect on performance
•  Efficiency is very input parameter dependent
•  Data transfers for HWA add a lot of overheads

How to organize the compilation flow?

INRIA-UIUC, June 2009

CAPS Compiler Flow
for Heterogeneous Targets

  Dealing with
various ISAs

  Not all code
generation can be
performed in the
same framework

HMPP annotated
application

HMPP
preprocessor

Generic host
compiler

template
generator

target
generator

Hardware vendor
compiler

main function

HMPP
codelet

Binary host
application

HMPP runtime

HMPP annotated
native codelet

Dynamic library
HMPP codelet

HMPP runtime
interface

Target codelet

INRIA-UIUC, June 2009

Heterogeneous Tuning Issue Example
#pragma hmpp astex_codelet__1 codelet &

#pragma hmpp astex_codelet__1 , args[c].io=in &

#pragma hmpp astex_codelet__1 , args[v].io=inout &

#pragma hmpp astex_codelet__1 , args[u].io=inout &

#pragma hmpp astex_codelet__1 , target=CUDA &

#pragma hmpp astex_codelet__1 , version=1.4.0

void astex_codelet__1(float u[256][256][256], float v[256][256][256], float c[256][256][256],

 const int K, const float x2){

 astex_thread_begin:{

 for (int it = 0 ; it < K ; ++it){

 for (int i2 = 1 ; i2 < 256 - 1 ; ++i2){

 for (int i3 = 1 ; i3 < 256 - 1 ; ++i3){

 for (int i1 = 1 ; i1 < 256 - 1 ; ++i1){

 float coeff = c[i3][i2][i1] * c[i3][i2][i1] * x2;

 float sum = u[i3][i2][i1 + 1] + u[i3][i2][i1 - 1];

 sum += u[i3][i2 + 1][i1] + u[i3][i2 - 1][i1];

 sum += u[i3 + 1][i2][i1] + u[i3 - 1][i2][i1];

 v[i3][i2][i1] = (2. - 6. * coeff) * u[i3][i2][i1] + coeff * sum - v[i3][i2][i1];

 }

 }

 }

 for (int i2 = 1 ; i2 < 256 - 1 ; ++i2){

 for (int i3 = 1 ; i3 < 256 - 1 ; ++i3){

 for (int i1 = 1 ; i1 < 256 - 1 ; ++i1{

 }astex_thread_end:;

}

Need interchange
If aims at NVIDIA GPU

INRIA-UIUC, June 2009

Varying Available Resources

  Available hardware resources are changing over
the execution time
•  Not all resources are time-shared, e.g. a HWA may

not be available
•  Data affinity must be respected

How to ensure that conflicts in resource usage will
not lead to global performance degradation?

INRIA-UIUC, June 2009

OpenMP in Unfriendly Environment
  OpenMP programs performance is strongly

degraded when sharing resources
•  Example with NAS parallel benchmark, 2 cores, one

rogue application using one of the core
•  Best loop scheduling strategy not identical on loaded

or unloaded machine

0

200

400

600

800

1000

1200

1400

1600

1800

FT
 MG
 SP
 LU
 BT
 EP
 CG
 UA

Seq

static

Static + Rogue

Dynamic8 + Rogue

Adapt10 + Rogue

INRIA-UIUC, June 2009

Peak Performance is Not the Goal

  Maximizing the Return on Investment

INRIA-UIUC, June 2009

Difficult Decisions Making with Alternative
Codes (Multiversioning)

  Various implementations of routines are
available or can be generated for a given target
•  CUBLAS, MKL, ATLAS, …
•  SIMD instructions, GPcore, HWA, Hybrid

  No strict performance order
•  Each implementation has a different performance

profile
•  Best choice depends on platform and runtime

parameters

  Decision is a complex issue
•  How to produce the decision?

INRIA-UIUC, June 2009

Illustrating Example:
Dealing with Multiple BLAS Implementations

  Runtime selection of DGEMM in
 High Performance Linpack
•  Intel(R) Xeon(R) E5420 @ 2.50GHz
•  CUBLAS - Tesla C1060, Intel MKL

  Three binaries of the application
  Static linking with CUBLAS
  Static linking with MKL
  Library mix with selection of routine at runtime

  Automatically generated using CAPS tooling

  Three hardware resource configurations
  GPU + 1, 2, and 4 cores used for MKL

INRIA-UIUC, June 2009

Performance Using One Core

  Performance in Gigaflops
  4 problem sizes: 64, 500, 1200, 8000

0,07

1,2

4,4

23

1,3

7,3
 8

9

1,4

6,5

8,1

23,3

0

5

10

15

20

25

64
 500
 1200
 8000

Pe
rfo

rm
an

ce
 (G

FL
O

PS
)

Problem Size

Cublas

MKL

Dyn. Sel.

INRIA-UIUC, June 2009

Performance Using Four Cores

0,07

1,2

4,4

23

0,9

5

9,7

26

1,2

7,2

13

32

0

5

10

15

20

25

30

35

64
 500
 1200
 8000

Pe
rfo

rm
an

ce
 (G

FL
O

PS
)

Problem Size

Cublas

MKL

Dyn. Sel.

INRIA-UIUC, June 2009

The Challenges

  Programming
•  Medium

  Resources management
•  Medium

  Application deployment
•  Hard

  Portable performance
•  Extremely hard

INRIA-UIUC, June 2009

Research Directions

  New Languages
•  X10, Fortress, Chapel, PGAS languages, OpenCL, MS Axum, …

  Libraries
•  Atlas, MKL, Global Array, Spiral, Telescoping languages, TBB, …

  Compilers
•  Classical compiler flow needs to be revisited
•  Acknowledge lack of static performance model
•  Adaptative code generation

  OS
•  Virtualization/hypervisors

  Architectures
•  Integration on the chip of the accelerators

  AMD Fusion, …

•  Alleviate data transfers costs
  PCI Gen 3x, …

Key for the
short/mid

term

INRIA-UIUC, June 2009

Directives Based Approach for
Hardware Accelerators (HWA)
  Directives

•  Do not require a new programming language
•  Already state of the art approach (e.g. OpenMP)
•  Keep incremental development possible
•  Avoid exit cost

  Does not address very large scale parallelism
•  But this is not (yet) the issue for multicore nodes

  Path chosen by CAPS entreprise
•  Heterogeneous Multicore Parallel Programming (HMPP)
•  Centered on the codelet / pure function concept
•  Focus on CPU – GPU communications optimizations
•  Complementary to OpenMP and MPI

INRIA-UIUC, June 2009

What is Missing in OpenMP for HWA

  Remote Procedure Call (RPC) on a HWA
•  Code generation for GPU, …
•  Hardware resource management

  Dealing with non shared address space
•  Explicit communications management to optimize the

data transfers between main the CPU and the HWA

INRIA-UIUC, June 2009

HMPP1.5 Simple Example
#pragma hmpp sgemmlabel codelet, target=CUDA, args[vout].io=inout
extern void sgemm(int m, int n, int k, float alpha,
 const float vin1[n][n], const float vin2[n][n],
 float beta, float vout[n][n]);

int main(int argc, char **argv) {
…
 for(j = 0 ; j < 2 ; j++) {
#pragma hmpp sgemmlabel callsite
 sgemm(size, size, size, alpha, vin1, vin2, beta, vout);
 }

#pragma hmpp label codelet, target=CUDA:BROOK, args[v1].io=out
#pragma hmpp label2 codelet, target=SSE, args[v1].io=out, cond=“n<800“
void MyCodelet(int n, float v1[n], float v2[n], float v3[n])
{ int i;
 for (i = 0 ; i < n ; i++) {
 v1[i] = v2[i] + v3[i];
 }
}

INRIA-UIUC, June 2009

Group of Codelets (HMPP 2.0)

INRIA-UIUC, June 2009

•  Several callsites
grouped in a sequence
corresponding to a
given device

  Memory allocated for
all arguments of all
codelets

  Allow for resident data
but no consistency
management

Optimizing Communications

  Exploit two properties
•  Communication / computation overlap
•  Temporal locality of RPC parameters

  Various techniques
•  Advancedload and Delegatedstore
•  Constant parameter
•  Resident data
•  Actual argument mapping

INRIA-UIUC, June 2009

Advancedload Directive

  Avoid reloading constant data

t2 is not reloaded at each loop iteration

int main(int argc, char **argv) {
…
#pragma hmpp simple advancedload, args[v2], const
 for (j=0; j<n; j++){
#pragma hmpp simple callsite, args[v2].advancedload=true
 simplefunc1(n,t1[j], t2, t3[j], alpha);
 }
#pragma hmpp label release
…
}

INRIA-UIUC, June 2009

#pragma hmpp <mygp> group, target=CUDA
#pragma hmpp <mygp> map, args[f1::inm; f2::inm]

#pragma hmpp <mygp> f1 codelet, args[outv].io=inout
static void matvec1(int sn, int sm,

 float inv[sn], float inm[sn][sm], float outv[sm])
{
 ...
}
#pragma hmpp <mygp> f2 codelet, args[v2].io=inout
static void otherfunc2(int sn, int sm,

 float v2[sn], float inm[sn][sm])
{
 ...
}

Actual Argument Mapping
  Allocate arguments of various codelets to the same

memory space
  Allow to exploit reuses of argument to reduce

communications
  Close to equivalence in Fortran

27 INRIA-UIUC, June 2009

Arguments share
the same space
on the HWA

Conclusion
  Multicore ubiquity is going to have a large impact on

software industry
•  New applications but many new issues

  Will one parallel model fit all?
•  Surely not but multi languages programming should be avoided
•  Directive based programming is a safe approach
•  Ideally OpenMP will be extended to HWA

  Toward Adaptative Parallel Programming
•  Compiler alone cannot solve it
•  Compiler must interact with the runtime environment
•  Programming must help expressing global strategies / patterns
•  Compiler as provider of basic implementations
•  Offline-Online compilation has to be revisited

INRIA-UIUC, June 2009

