
gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 1

Thomas Herault

INRIA Grand-Large
Université Paris Sud-XI
University of Tennessee

herault@lri.fr,
http://mpich-v.lri.fr/

Grand Large
Université Paris Sud / INRIA gl

A Multi-Protocols Fault Tolerant MPI

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 2

Outline

•  Introduction

•  MPICH-V fault tolerance generic Framework

•  Comparison of protocols

•  MPICH-PCL, and Open MPI-V: optimized protocols

•  FT-MPI / MPI-3-FT

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 3

Rollback Recovery in Message Passing: a long history of research!

2 main parameters distinguish the proposed FT techniques:

Transparency: application checkpointing, prog. controlled ckpt, automatic.

 prog. cont. ckpt: an API returns errors handled by the programmer (FT-MPI)

 application ckpt: applications store intermediate results and can restart form them

 automatic: runtime detects faults and handles recovery

Checkpoint coordination: coordinated, uncoordinated.

 coordinated: all processes are synchronized and compute a snapshot

 all processes rollback from the same snapshot

 uncoordinated: each process checkpoint independently of the others
 each process is restarted independently of the others

 Message logging: no, pessimistic, optimistic, causal.

 pessimistic: all messages are logged on reliable media and used for replay

 optimistic: all messages are logged on non reliable media. If 1 node fails, replay is
 done according to other nodes logs. If >1 node fail, rollback to last coherent
 checkpoint  may lead to domino effect!!!
 causal: optimistic+Antecedence Graph, reduces the recovery time

A long history of research

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 4

Software Stack

Automatic Library Based
Fault Tolerance

Application
Num.
Library

Num.
Library

Other
Library

Communication Library
Operating System

Hardware

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 5

The objective is to checkpoint the
application when there is no in transit
messages between any two nodes
 global synchronization
 network flush
 supposed to be not scalable Nodes

Ckpt

failure

detection/
global stop

restart

Nodes
Ckpt

failure
detection

restart

Coordinated Checkpoint
(Chandy/Lamport)

Uncoordinated Checkpoint

Coordinated & uncoodinated ckpt.

No global synchronization (scalable)
 Nodes may checkpoint at any time
(independently of the others)
 Need to log non deterministic
events: In-transit Messages
  communication perf. may be poor

Sync

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 6

Outline

•  Introduction

•  MPICH-V fault tolerance generic Framework

•  Comparison of protocols

•  MPICH-PCL, and Open MPI-V: optimized protocols

•  FT-MPI / MPI-3-FT

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 7

MPICH-V Objectives:
1) Automatic fault tolerance
2) Transparency for the programmer & user
3) Tolerate n faults (n being the #MPI processes)
4) Scalable Infrastructure/protocols
5) Theoretical verification of protocols

MPICH-V Objectives

Fault tolerance context:
a) Fault model: Machine crash (detected by a fault detector)

b) Distributed execution model: PieceWise Deterministic (each process
 execution is modeled as consisting of a number of state intervals bounded
 by message receiving events)

Main Goals:
I) Study, design and implement existing and new F. T. MPI protocols
II) Compare them fairly in the contexts of Cluster and Grid

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 8

MPICH-V components

node

Network

node

Dispatcher
(mpirun)

Fault detector node

Channel Memories
Checkpoint

servers

Event Loggers

Checkpoint
Scheduler

- Several stable components

- 2 components on every node (ckpt lib + deamon).

- A MPICH-V protocol uses a subset of these components

Volatile

Stable

Proc. Ckpt

FT protoc.

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 9

Fault Tolerant Protocols
•  V1: Uncoordinated checkpointing + remote pessimistic

message logging

•  V2: Uncoordinated checkpointing + sender based pessimistic

message logging

•  Vcausal: Uncoordinated checkpointing + causal message

logging

•  V/CL: Coordinated Non Blocking implementation (Chandy/

Lamport)

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 10

MPICH-V1 protocol [SC2002]

Pessimistic remote message logging, Uncoordinated checkpointing

Nodes (volatiles)

Channel Memories
(stable)

0 1 2 N

CM CM CM

…

Checkpoint

Restart

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 11

MPICH-V/CL protocol [Cluster2003]

Coordinated checkpointing, (Chandy-Lamport)

Reference protocol for coordinated checkpointing

1)  When receiving a Checkpoint tag, start checkpoint + store any incoming mess.
2)  Store all incoming messages in checkpoint image
3)  Send checkpoint tag to all neighbors in the topology.

 Checkpoint is finished when a Tag has been received from all neighbors
4) After a crash, all nodes retrieve checkpoint images from the CS
5) Deliver stored in-transit messages to restarted processes

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 12

MPICH-V2 protocol [SC2003]
Pessimistic sender based message logging, Uncoordinated ckpt.

Improve bandwidth (direct communications) remove Channel Memories
Pessimistic message logging: only reception events should be saved

Sender based logging

1)  Send information about reception to Event Logger
2)  When sending, first wait for EL acknowledge of prev. mess. And store

mess. payload in mem (memory mapped file).
3)  After a crash, retrieve ordered list of reception from EL
4) Contact initial senders for replay

Payload should be checkpointed

If B crashes and the event is not logged,
How will we know that M should be received by B?

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 13

MPICH-Vcausal protocol [Cluster 2004]
Causal message logging, Uncoordinated checkpointing

Improve latency  asynchronous event logging
All message event should be saved (non logged events) on the on nodes
 piggyback message event to MPI messages

1)  Send information about reception to Event Logger, asynchronously (total order)
2)  EL acknowledge of prev. mess. asynchronously
3)  If no ack from the EL, piggyback causality info to messages
4) After a crash, retrieve ordered list of reception from EL and other nodes
5) Contact initial senders for replay

Sender based logging

Causality information

Payload should be checkpointed

Causality should be checkpointed

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 14

Outline

•  Introduction

•  MPICH-V fault tolerance generic Framework

•  Comparison of protocols

•  MPICH-PCL, and Open MPI-V: optimized protocols

•  FT-MPI / MPI-3-FT

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 15

A first comparison

Main Advantage Main Drawback

V1
(2002)

Uncoordinated
Checkpoiting

Every com. crosses the
Channel Memory

V2
(2003)

Direct
communications

Synchronous Event
Logging

Vcausal
(2004)

Asynchronous
Event Logging

Piggyback information
(events) in every

message

V/CL
(2003)

Direct, CP piggyback
free communications

Coordinated
Checkpointing

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 16

Experimental platform
(early experiments)

32 node Cluster with Ethernet 100 network
(other experiments on Myrinet and SCI in papers)

Athlon XP 2800+ (2Ghz) CPU
1 GB memory (DDR SDRAM)
70 GB IDE ATA 100 hard drive
100 Mbits/s Ethernet NIC

All nodes connected by a 48 ports Ethernet switch

Linux 2.4.20
MPICH 1.2.5
Benchmark compiled with GCC –O3 and PGF77

Tests in dedicated mode
Measurement repeated 5 times (only mean is presented)

Microbenchmark with NetPIPE utility

A single Checkpoint server for all experiments

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 17

Latency for a 0 byte
MPI message:
MPICH-P4 (77us),
MPICH-V1 (154us),
MPICH-V2 (277us!!!)
MPICH-Vcausal (120us)
MPICH-V/CL (110us)

CL
Causal
V1
V2

P4

V-protocols Latency

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 18

CL
Causal

V1

V2
P4

V-protocols Bandwidth

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 19

NAS-Benchmark Class A and B

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 20

Latency Bandwidth

Implementation
overhead

Full duplex
Logging overhead

NAS Benchmark Class A and B

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 21

(+100%)

1F/2M

NAS BT Class B on 25 nodes

Increasing
Number of
Non overlapping
faults

Performance when faults occur

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 22

Outline

•  Introduction

•  MPICH-V fault tolerance generic Framework

•  Comparison of protocols

•  MPICH-PCL, and Open MPI-V: optimized protocols

•  FT-MPI / MPI-3-FT

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 23

MPICH-P/CL protocol [FGCS’07]

Coordinated Blocking checkpointing

1)  Send a checkpoint tag to all others, and block communications (as soon as
tag is gone)

2)  When receiving a checkpoint tag from any, do 1)
3)  When received a checkpoint tag from all, take checkpoint, and unfreeze

communications
4) After a crash, all nodes retrieve checkpoint images from the CS
5) In-transit messages are stored in message queues

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 24

MPICH-V/CL protocol [Cluster2003]

Coordinated checkpointing, (Chandy-Lamport)

Reference protocol for coordinated checkpointing

1)  When receiving a Checkpoint tag, start checkpoint + store any incoming mess.
2)  Store all incoming messages in checkpoint image
3)  Send checkpoint tag to all neighbors in the topology.

 Checkpoint is finished when a Tag has been received from all neighbors
4) After a crash, all nodes retrieve checkpoint images from the CS
5) Deliver stored in-transit messages to restarted processes

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 25

MPICH-PCL on
Low Latency Network
(myri2k - GM driver)

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 26

• High speed MPI implementations use
Zero Copy and decompose Recv in:
a) Matching, b) Delivery

Fig. from
Bouteiller

Bandwidth of OpenMPI-V compared to others

OpenMPI-V Overhead on NAS (Myri10g)

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 27

Outline

•  Introduction

•  MPICH-V fault tolerance generic Framework

•  Comparison of protocols

•  MPICH-PCL, and Open MPI-V: optimized protocols

•  FT-MPI / MPI-3-FT

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 28

Software Stack

Application Based
Fault Tolerance

Application
Num.
Library

Num.
Library

Other
Library

Communication Library
Operating System

Hardware

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 29

FT-MPI

•  Failures are notified to all processes, ASAP
•  Repair operation:

MPI_Comm_dup(MPI_COMM_WORLD)
– Shrink / Blank / Replace modes

•  After repair: state similar as the state after
MPI_Init

•  Collectives: two-phase commit at the end of
each collective

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 30

FT-MPI: Diskless Checkpointing

Figure from
Chen, Fagg,
Langou, Angskun,
Bosilca, Dongarra

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 31

MPI-3 (FT)

•  Proposal for MPI-3 (FT WG)
•  Enable Distributed Repair

– Failure notification ALAP

•  Repair: either Local or Global (collective)
•  Avoid Reseting All

– Re-Join Communicators

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 32

Outline

•  Introduction

•  MPICH-V fault tolerance generic Framework

•  Comparison of protocols

•  MPICH-PCL, and Open MPI-V: optimized protocols

•  FT-MPI / MPI-3-FT

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 33

Conclusion
•  Automatic Rollback/Recovery:

–  Which protocol is best fitted

–  Depends on the reliability of the platform, and the
communication pattern of the application

–  We suspect: not that much performance difference
between protocols

•  Unless under really frequent failures

–  Coordination is not as costly as we first thought
•  Still need evaluation on peta-scale systems

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 34

Conclusion
•  What prevents Automatic/Transparent Checkpointing in

Petascale Computing?

–  Lack of widely available MPI implementation featuring
system-level checkpointing

•  Open MPI (still XP)

–  Fault Tolerant Runtime Environment
•  Will come with FT RTE for Application-Level Checkpointing

–  Widely distributed System Level Checkpointer /
Standardized System Level Checkpointing

•  BLCR becomes more widely spread

–  Application I/O
•  FileSystem Snapshot ioctl

–  Checkpoint Storage Hardware / Network / Scheduling

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 35

Conclusion

•  Application-level Fault-Tolerance:
The way to go?
– No known large-scale evaluation of automatic

approaches
– Library Stacking is an issue in MPI

•  Costs of Application-level:
– FT-MPI approach was too synchronous
– Current proposal puts hidden synchronous

operations in the implementation

gl
 Grand Large

Joint Laboratory for Petascale Computing - First Workshop, Paris, June 2009 36

Questions ?

www.lri.fr/~gk/MPICH-V
A Multi-Protocols Fault Tolerant MPI

