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Summary

• Algorithms and Data Structures need to take memory 

prefetch hardware into account

• This talk shows one example - Matrix-vector multiply

• As we’ll show, the results can be dramatic

• Prefetch is designed to improve realized memory 

bandwidth.  How important is that?
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3

BG/L Node

700 MHz

• Consider the simple 

case of memory 

copy:

• Do i=1,n

a(i) = b(i)

• Suppose system 

memory 

bandwidth is 

5.5GB/s.  How 

fast will this loop 

execute?
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Stream Performance Estimate

• Easy estimate: 11 GB/s = 2 * 5.5 GB/Sec to L3, 5.5 
GB/Sec to main memory
• Minimum link speed is 5.5 GB/s each way, Stream adds both

• Measured performance is 1.2 GB/s!
• Why?

• Time to move each cache line
• 5.5 GB/s ~ 8 bytes/cycle (memory bus bandwidth)

• ~60 cycles L2 miss (latency)

• 64 byte cache line = 8 cycles (bandwidth) + 60 cycles (latency) = 
68 cycles or ~ 0.94 byte/cycle (read)

• Stream bytes read + bytes written / time, so stream estimate is 2 
* 0.94 byte/cycle, or 1.3 GB/sec

• This is typical (if anything, better than many systems 
because L2 miss cost is low)

• (there’s more to this analysis, of course)
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Example: Sparse Matrix-Vector Product

• Common operation for optimal (in floating-point operations) 

solution of linear systems

• Sample code (in C):

for row=1,n

m = i[row] - i[row-1];

sum = 0;

for k=1,m

sum += *a++ * x[*j++];

y[i] = sum;

• Data structures are a[nnz], j[nnz], i[n], x[n], y[n]
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Simple Performance Analysis

• Memory motion:

• nnz (sizeof(double) + sizeof(int)) + 

n (2*sizeof(double) + sizeof(int)) 

• Assume a perfect cache (never load same data twice; 

only compulsory loads)

• Computation

• nnz multiply-add (MA)

• Roughly 12 bytes per MA

• Typical WS node can move 1-4 bytes/MA

• Maximum performance is 8-33% of peak
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Realistic Measures of  Peak Performance
Sparse Matrix Vector Product
One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

Thanks to Dinesh Kaushik; 
ORNL and ANL for compute time
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Comments

• Simple model based on memory performance gives good 

bounds on performance

• Detailed prediction requires much more work; often not 

necessary or relevant to the algorithm designer

• Note that a key feature of the model is the use of 

measured sustained memory bandwidth

• In many cases, achieved performance is close to that 

limit; advanced techniques, such as auto-tuners, cannot 

significantly boost performance

• But the measured memory bandwidth is low relative to the 

raw hardware bandwidth…
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Prefetch Engine on IBM Power Microprocessors

• Beginning with the Power 3 chip, IBM 

provided a hardware component called 

a prefetch engine to monitor cache 

misses,  guess the data pattern (“data 

stream”) and prefetch data in 

anticipation of their use. 

• Power 4, 5 and 6 microchips enhanced 

this functionality.

The Prefetch Engine on Power3 chip

Data Streams L2 Cache (MB) L3 Cache(MB)

Power 4 8 ~1.5 32

Power 5 8 1.875 36

Power 6 16 4 32

Table 2: Data Stream and Cache information on IBM power chips

Data Stream and Cache Information
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Inefficiency of CSR and BCSR formats

• The traditional CSR and Blocked CSR are hard to 

reorganize for data streams (esp > 2 streams) to enable 

prefetch, since the number of non-zero elements or blocks 

for every row may be different. 

• Blocked CSR (BCSR) format can improve performance for 

some sparse matrices that are locally dense, even if a few 

zeros are added to the matrix. 

• If the matrix is too sparse (or structure requires too 

many added zeros), BCSR can hurt performance



11

Streamed Compressed Sparse Row (S-CSR) format

• S-CSR format partitions the sparse matrix into blocks along rows with size of bs. Zeros 

are added in to keep the number of elements the same in each row of a block. The 

column indices for ZEROs in each row are set to the index of the last non-zero element 

in the row. The first rows of all blocks are stored first, then second, third … and bs-th

rows. 

• For the sample matrix in the following Figure, NNZ =  29. Using a block size of bs = 4, it 

generates four equal length streams R, G, B and P.  This new design only adds 7 zeros 

every 4 rows.

0

0 0

0 0

•Partition the sparse matrix into blocks along rows with size of bs. Add in ZEROs to keep the amount of stored values is 
the same for every row in each block. Store the first rows of all blocks  first, then second, third  … and bs-th rows. 

•using bs =4 block for example, it will generate R, G, B and P four equal length streams. In the above matrix, NNZ =  29. 
Design III only adds in 7 zeros. However, if 4x4 block is employed, 144-29 = 115 zeros have to be included.

•This format adds in  the same  or less amount  of ZEROs  than blocking format, but more index for vector X than the 
traditional CSR format. 

R

G

B

P

A sparse matrix (N = 12, NNZ= 29)

Design III

0

0

Streamed Compressed Sparse Row format
(S-CSR) 

2 2

0 4 6 9ptr

val ind

0   4    8   11 2   6   10

2   6  10 10   4   8   3   5    9

1   8   8     8   6   6    1    6  10

4   6   6     6   8  11   0    5  11
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Streamed Blocked Compressed Sparse Row (S-BCSR) format

• When the matrix is locally dense and can be blocked efficiently with a few ZEROs added 

in, we can restore the blocked matrix using the similar idea as S-CSR format. The first 

rows of all blocks are stored first, then second, third … and last rows. Using 4x4 block for 

example, it will generate R, G, B and P four equal length streams. We call this the 

Streamed Blocked Compressed Row storage format (S-BCSR). 

•Store the first rows of all blocks  first, then second, third  … and bs-th rows.  
•using 4x4(bs =4) block for example, it will generate R, G, B and P four equal length streams.
•This design requires all the blocks at least have the same row size. 

R

G

B

P

Streamed Blocked Compressed Sparse Row format
(S-BCSR) 

A sparse matrix with 4X4 blocks

Design II

0 2 1 2

0 2 3 4

val

ind

ptr
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Codes for CSR and S-CSR-2 formats
CSR S-CSR-2

void CSR(double *v, double *x, 

double *z, int *ii, int *idx, int NROW)

{

int i, j,n, *idxp;

double sum1, *v1, xb;

#pragma omp parallel for \

private(i,j,n, sum1,v1,idxp,xb) \

schedule(static)

for (i=0; i<NROW; i++) {

sum1 = 0.0;

n = ii[i] - ii[0]; v1 = v+n; 

idxp = idx+n;

for (j=ii[i]; j<ii[i+1]; j++) {

xb = *(x + (*idxp++));

sum1 += (*v1++)*xb;

}

z[i] = sum1;

}

}

void S_CSR_2(double *v, double *x, double *z, int *ii, 

int *idx, int NROW)

{

int rbs = 2;

int MROW =NROW/rbs, rrows = NROW%rbs, rslast

= rbs;

if(rrows > 0) {MROW++;  rslast = rrows;}

double *v1, *v2;

int *ix1, *ix2;

int i, j, k, nl, nm, ilen;

double sum1, sum2;

ilen = ii[MROW]  - ii[0];

ix1 = idx;       v1 = v;

ix2 = ix1+ilen;  v2 = v1+ilen;

int MNR = MROW-1;

if(rrows == 0 ) MNR = MROW;

double *v10,  *v20;

int *iix1, *iix2;

#pragma omp parallel for \

private(i,j,nm, sum1,sum2,v10,v20,iix1,iix2) \

schedule(static)

for (i=0; i<MNR; i++) {

sum1 = sum2 =  0.0;

nm = ii[i] - ii[0];

// two streams

v10 = v1  + nm;   v20 = v2  + nm;

iix1= ix1 + nm;   iix2 = ix2 + nm;

for (j=ii[i]; j<ii[i+1]; j++){

sum1 += *(v10++)*x[*iix1++];

sum2 += *(v20++)*x[*iix2++];

}//j

z[rbs*i ] = sum1;     z[rbs*i+1] = sum2;

}//i

i = MNR;

if (rrows == 1 ) {

sum1 = 0.0;

nm = ii[i] - ii[0];

v10 = v1  + nm;

iix1= ix1 + nm;

for (j=ii[i]; j<ii[i+1]; j++) 

sum1 += *(v10++) * x[*iix1++];

z[rbs*i ] = sum1;

}

}
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Codes for BCSR-4 and S-BCSR-4 formats
BCSR-4 S-BCSR-4

void BCSR_4(double *v, double *x, double *z, int *ii, int *idx, int MROW)

{  

int i, j, n, *idxp;

double x1,x2,x3,x4,x5, sum1,sum2,sum3,sum4,sum5;

double *xb, *v0;

#pragma omp parallel for \

private(i, j, n, sum1, sum2, sum3, sum4, v0, xb, idxp)  \

schedule(static)

for (i=0; i<MROW; i++) {

n  = ii[i] - ii[0];

v0 = v+16*n; 

idxp = idx+n;

sum1 = sum2 = sum3 = sum4 = 0.0;

for (j=ii[i]; j<ii[i+1]; j++) {

xb = x + 4*(*idxp++);

x1 = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3];

sum1 += v0[ 0] *x1  + v0[ 1] *x2 + v0[ 2] *x3  + v0[ 3] *x4;

sum2 += v0[ 4] *x1  + v0[ 5] *x2 + v0[ 6] *x3  + v0[ 7] *x4;

sum3 += v0[ 8] *x1  + v0[ 9] *x2 + v0[10]*x3  + v0[11]*x4;

sum4 += v0[12]*x1 + v0[13]*x2  +v0[14]*x3   + v0[15]*x4;

v0 += 16;

}

z[4*i ] = sum1; z[4*i+1] = sum2;

z[4*i+2] = sum3;      z[4*i+3] = sum4;

}

}

void S_BCSR_4(double *v, double *x, double *z, int *ii, int *idx, int MROW)

{

int i, j, n, len, *idxp;

double x1,x2,x3,x4,x5, sum1,sum2,sum3,sum4;

double *xb, *v0, *v1, *v2, *v3, *v4, *v10, *v20, *v30, *v40;

len = (ii[MROW] - ii[0])*4;

v1 = v;   v2 = v+len;  v3 = v+len*2; v4 = v+len*3;

#pragma omp parallel for \

private(i,j,n,sum1,sum2,sum3,sum4,v10,v20,v30,v40,xb,idxp) \

schedule(static)

for (i=0; i<MROW; i++) {

n  = ii[i] - ii[0];

v10 = v1+4*n; v20 = v2+4*n;

v30 = v3+4*n;     v40 = v4+4*n;

idxp = idx+n;

sum1 = sum2 = sum3 = sum4 = 0.0;

for (j=ii[i]; j<ii[i+1]; j++) {

xb = x + 4*(*idxp++);

x1 = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3];

sum1 += v10[0]*x1 + v10[1]*x2 + v10[2]*x3  + v10[3]*x4;

sum2 += v20[0]*x1 + v20[1]*x2 + v20[2]*x3  + v20[3]*x4;

sum3 += v30[0]*x1 + v30[1]*x2 + v30[2]*x3  + v30[3]*x4;

sum4 += v40[0]*x1 + v40[1]*x2 + v40[2]*x3  + v40[3]*x4;

v10 += 4; v20 += 4; v30 += 4; v40 += 4;

}

z[4*i ] = sum1;       z[4*i+1] = sum2;

z[4*i+2] = sum3;     z[4*i+3] = sum4;

}

}
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Some Sparse Matrices used in the tests

• We used matrices from the University of Florida collection

Matrix N NNZ Matrix N NNZ

494_bus 494 1080 bcsstm27 1224 28,675

shipsec5 179860 5146478 gemat11 4929 33,185

airfoil_2d 14214 259688 bai-dw4096 8192 41,746

ibm-dc1 116835 766396 bcsstk35 30237 740,200

gupta3 16783 4670105 crystk03 24696 887,937

Hood 22054 5494489 goodwin 7320 324,784

msdoor 415863 10328399 bcircuit 68902 375,558

Ldoor 952203 23737339 shyy161 76480 329,762

bcsstk25 15439 133840 bbmat 38744 1,771,722

finan512 74752 335872 olafu 16146 515,651

qa8fk 66127 863353 venkat50 62424 1,717,792

nd24k 72000 14393817 pwt 36519 181,313

af_shell9 504855 9046865 sinc18 16428 973,826

audikw_1 943695 39297771 ohne2 181343 11,063,545

cfd2 123440 1605669 thermal2 1228045 4,904,179

raefsky3_5 106000 7443840 TSOPF_RS_b2383 38120 16,171,169

finance256 37376 167936 s3rmt3m1 5489 112,505

• All the codes were compiled 

with “xlc_r –O3 –qstrict –q64 

-qtune=auto -qarch=auto”.  

64KB page size was set for 

text and data on Power5 and 

Power6 chips. 

• Performance measured is 

that average of three runs 

after a “cold start” run
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Performance Ratio compared to CSR format 
• S-CSR format is better than CSR format for all (on Power 5 and 6) or Most ( on Power 4) matrices

• S-BCSR format is better than BCSR format for all (on Power 6) or Most ( on Power 4 and 5) matrices

• Blocked format performance from ½ to 3x CSR.

Performance Ratio Compared to CSR format
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S-CSR formats with two and four streams
• S-BCSR-4 is generally better than S-BCSR-2 on Power 6. 

• On Power 4 and 5, these two are mixed.

• S-CSR-4 format can achieve over 2x performance improvement of CSR.

Performance Ratio Compared to CSR format
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MPI with 4 nodes

• Parallel tests with MPI using 4 nodes on P5 and P6. At most 50% 

improvement achieved. 

• Probably due to communication overhead (these are small matrices)
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SMP with 4 threads

• SMP with 4 threads also tested on P5 and P6. Typical performance boost of 

1.5-2x over CSR

• Shows prefetch works with multiple threads (more tests needed)
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Comparison of S-BCSR-4 format to BCSR-4 format

• The matrices are chosen with large data size (> 32 MB) and the performance 

of BCSR format is close to or better than CSR format.

• Performance Improvement of S-BCSR-4 format compared to BCSR-4 format: 

P4: 20 -60%, P5: 30 -45%, P6: 75 -108%
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Streamed format on Intel processors

• The tests were also run on abe.ncsa.uiuc.edu (Xeon/Clovertown, 2.33 GHz, 2x4 MB L2 

cache)

• S-CSR-2 and/or S-CSR-4 format can result in better performance than CSR format for 

many matrices.

• S-BCSR-4 format is better than BCSR-4 format for all the matrices except for 

“bcsstm27”, which is small and fits in cache. For most matrices, S-BCSR format provides 

a 10 - 20% of performance improvement.
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Summary and Future Work

• The streamed CSR and BCSR storage formats can significantly 

improve the performance of SpMV for a variety of matrices on IBM 

processors. Over 100% performance improvement can be achieved.

• Simulation results for POWER7 also are good 

• The new formats also show the benefits on Intel processors.

• We will compare the new format with other auto-tuning packages, such 

as Berkeley-OSKI, and with other approaches to improve performance 

within rows (such as sorted CSR)

• New formats will be provided within PETSc

• Initial results: S-CSR provides more performance than OSKI

• Alignment and SIMD instructions will also be considered in the new 

formats.

• Perhaps most important – extension to other matrix-vector operations 

used in preconditioners


