HPC at INRIA

Michel Cosnard
INRIA President and CEO

DE RECHERCHE
EN INFORMATIQUE
ET EN AUTOMATIQUE

French Institute for Research in Computer Science and Control

Information and Communication Sciences and Technologies

- Research
- Experiment
- Transfer and innovate
- Share and disseminate
- Create references

A public institution of a scientific and technological character, and under the dual authority of the Ministry of Research and the Ministry of Industry

INRIA today

3,900 people

A budget of €190 M before taxes Of which more than 20% from external resources

2,800 scientists

1300 researchers and teaching-researchers1000 Ph.D. students500 postdoctoral fellows

8 research centers in France

80 associated teams throughout the world

4 300 scientific publications

24 international conferences

230 active patents

96 innovative companies created

60 software deposited in 2008

On 1st January 2009

INRIA's Research Centers

An original research model: The INRIA Project-Teams

- From 15 to 20 people, with a scientific leader
- A focused scientific theme
- A limited lifespan: 8 years on average
- Medium-term objectives and work program
- Joint projects with industrial and scientific partners in France and around the world
- Financial and scientific autonomy
- From research to transfer
- A priori and a posteriori evaluation

170 INRIA Project-Teams in 2009

An organization that complements the universities

Technological developments

Experimentation and development services

Technological development actions

Software development operations

Experimental platforms

Support for standardization

Industrial partnerships Small and Medium - Sized Firms Pact

A long experience in relations with the economic world

Software distribution (contract and « open source »)

Co-founder or partner of about twenty competitiveness clusters

Aerospace Valley, Minalogic, System@tic, SCS, Images et réseaux, Medicen, PICOM...

Strategic partnerships

Alcatel Lucent Bell Labs, ST Microelectronics, Microsoft Research, Orange, EDF...

Joint laboratories

- Microsoft Research
- ALU Bell Labs

Spin off Companies stemming out from INRIA

- 96 companies created, with fifty alive
- Effective start-up support structures, seed-financing, partnership and networking

Partnership with SME

- INRIA support programme in favour of joint projects with SME (I-lab)
- Network of INRIA partners

European partnerships

Actor in the construction and the development on the European space of the research

Involvement in more than 180 European projects in the 6th and 7th FP

Founding member and driving force ofin ERCIM (European Research Consortium for Informatics and Mathematics)

Post-doctoral grant program

Development of relations with big European Industrial groups

- AIR&D, joint virtual ambient intelligence laboratory (INRIA, Philips, Thomson, Fraunhofer)
- Scilab, Objectweb consortia

Implementation of bilateral collaboration with other European Countries

Development of cross-border exchanges with the nearly regions

International relations

A joint research laboratory

LIAMA: French-Chinese computer science, control and applied mathematics laboratory

Collaboration agreements

MITACS (Mathematics of Information Technology and Complex Systems Canada)

80 INRIA project-teams linked with foreign teams as a part of the INRIA Partner Teams program

Reception of 1,743 scientists from other countries

Mobility program

Why HPC is important at INRIA

- HPC is identified as a structuring topic for the future of IST
 - Moore's law => strong trend in multi (or many) chips, cores, servers
 - Trend toward re-centralization (Cloud, DataCenters, and Supercomputing Centers)
 - New applications (ex: transactional HPC)
 - Commonalities with other computer science domains (large data sets, scalability)
- National and international efforts for coordination & organization
 - Creation of GENCI and participation of INRIA to GENCI
 - International initiatives (PRACE, IESP, etc.)
- INRIA has the research potential to be a leader of HPC in Europe
 - Simulation and design
 - 2/3 of the ANR (French NSF) projects related to HPC include INRIA researchers
 - More than 1/2 of the INRIA teams are involved in HPC related research.
 - Culture of multidisciplinary research
 - Culture of mixing methodologies within computer science (Strong collaborations between theoretical and experimental research)
 - Culture of exploration tools (testbed)

HPC Research Approach at INRIA

- Driven by Grand challenges in applications
- Three dimensions of HPC at INRIA:
 - From applied Mathematics to Computer Science
 - Continuum from hardware&software design to simulation
 - Research, Development AND Transfer to Industry

High-Frequency Simulations of Global Seismic Wave Propagation Using SPECFEM3D_GLOBE (32,888 cores on TACC Ranger) Finalists of the 2008 Gordon Bell competition

- Main research areas:
 - Modeling and numerical methods for very high performance
 - Scalable Algorithms and Solvers (adapted for multi-core CPUs and GPGPUs)
 - Visualization and Steering of Simulation
 - Middleware
 - Processor Architecture and Compilers

Electro-mechanical modeling of the heart

HPC research at INRIA From Computer Arithmetic to Scientific Platform

Scientific Visualization (e.g. Plasma Physic)

Modeling molecules

Earth reconstruction (inverse problems)

Modeling microprocessor temperature

Scientific software platform (Scilab)

Scientific visualization; Visual analytics

Mathematical Methods

Computing Models

Mesh generation

Batch Schedulers

Runtime environments

Computing & Communication Libraries

Single System Image

Compilation for processors, Multi-core & GPU

Microprocessor design

Computer Arithmetic

Cardiac imaging and simulation

Modeling Tissue Growth

Automatic Mesh Generation

Modeling Air quality

15 45 75 10517516510522535528

INRIA Strategic Activities in HPC

- Member of the French Strategic Committee on HPC and of GENCI
- Collaborate in the establishment of the « House of Simulation », Grand Paris
- Executive committee member of IESP
- Joint laboratory with UIUC-NCSA
- Joint laboratory with CERFACS
- Strategic Partnership with EDF on simulation
- Collaboration with Bull on Supercomputer design
- Collaboration with CEA on key system software (Kadeploy) for Supercomputers
- Member of the OpenMPI consortium and MPI Forum
- A stream of Spin-offs: Kerlabs (OS), Caps Entreprise (GPGPUs compiler), ActiveEon (distributed objects for HPC)
- INRIA/GENCI Initiative, with French competitiveness clusters, « national coordinated HPC program for SMEs »

An Example of INRIA Specificity

ALADDIN/Grid'5000: Nation wide experimental platform

Developed since 2003:

•A nationwide experimental platform for Large scale

exper

The n

provid

every

Many success stories in combinatorial optimizations:

-solve the n-Queens problem for n=25, in 2005

-solve (exact solution) of the flowshop Ta056-50-20 instance

one of the most remarkable one, in 2008:

>400 → Grid'5000 was used to design and improve the algorithm used

in the first computer victory against a professional Go player

>400 (9x9) in the last Paris tournament!

applications)

External impacts:

- Used for testing of OpenMPI
- •Kadeploy to be used as the deployment tool for TERA100

INRIA and the Joint-Lab on PetaScale Computing

- Research and development in for Peta-ExaScale HPC needs international collaborations
 - PetaScale Software design is already raising many significant research problems
 - ExaScale system design will open a very large domain of research and will require a huge effort from the community
 - Projects like PRACE in Europe and IESP at the international level help establishing clear roadmaps and focusing on the right problems
 - The economic situation is a threat for very large, single country, projects
- UIUC and NCSA with the BlueWaters project are in the forefront of research and development for Sustained PetaScale
 - Strong opportunity for INRIA researchers to participate and contribute to the research on Key algorithmic and software challenges in PetaScale computing.
 - Sustained PetaScale means a clear understanding of the applications and the design of truly scalable software
 - May increase at INRIA the facet of HPC Research related to production

