
Consistency in large-
scale systems

Marc Shapiro, INRIA & LIP6
1. Introduction

2

Consistency in large-scale systems

Sometime in near future…

Tomorrow:

• Petascale + distributed convergence
• Fat pipes !, core connectivity !
• Jitter !, latency "

Asynchronous, failure-prone

• FLP impossibility
• Byzantine behaviours

See results from distributed systems

3 Consistency in large-scale systems

Consistent access to mutable
information

Server-resident repository

• Single, consistent copy
• Remote access
• Centralized management

Replicated data

• Copy in each machine
• Local reads
• Multi-master writes
• Consistency: FLP
• High-level: In software

4

Consistency in large-scale systems 5

Active replication

Objects x, y, ...

Replicas, x2, x3,..., y1, y2, ... at sites 1, 2, 3, ...

Initiate operation f(x1, y1); propagate to other
sites; replay f(x2, y2), f(x3, y3), ...

Same operations, different orders?

x3

x1

x2

x
f (x1)

g(x2)

f (x3)

g(x1)

g(x3)

Consistency in large-scale systems

State of the art
Scalable systems:

• Last Writer Wins
• Ad-hoc: Lost work, arbitrary

Strong consistency:

• Maintain unknown invariants
• Single, global execution order
• Replay all operations at all replicas
• Lock-step: No concurrency

Multi-object:

• Total order, total replay across all
objects

Our goal: Relaxed but principled
6

2. CRDTs

7 Consistency in large-scale systems

Commutativity / Eventual
Consistency Theorem

Assuming:

• All concurrent operations commute
• Non-concurrent operations execute in

happens-before order
• All operations eventually execute at every

replica
Then, if clients stop initiating operations, all

replicas eventually converge to the same correct
value

8

Consistency in large-scale systems

Commutativity

Easy case: disjoint objects

CRDT: Commutative Replicated Data Type

• Trivial: ever-growing set + add
• State of the art: ever-growing ordered set
• Treedoc: efficient, scalable ordered set

9 Consistency in large-scale systems

Shared ordered-set invariants

Example: shared buffer "Inria"
buf[0] = "I"; buf[1] = "n"; buf[2] = "r"; ...
Sequence of atoms:

• total order
• identical at all sites
• requires consensus

10

I < n < r! i < a

• partial order

• local

Consistency in large-scale systems

Treedoc ordered set
abstraction

Insert: TIDs do not change

11

I

r

a

n

1

1

0

TID: path = [0|1]*

Contents: infix order

Non-destructive updates

’

L

0

i

0

Delete: TIDs do not change; eventually GC leaves

= I n r i aL ’ L

Consistency in large-scale systems

Balancing the tree

balance

• Does not commute with concurrent
updates

• Not essential: abort it in the presence
of concurrent updates

Requires consensus (2- or 3-phase
commit), but off critical path

Garbage collection

12

Consistency in large-scale systems

Performance

13

"10 revisions

kB serialised

Treedoc

wikidoc

!s

"1000 ops

with rebalance

no rebalance

en.wikipedia.org/George_W_Bush

• 150 kB, most frequently revised

3. Optimistic replication

14

Consistency in large-scale systems 15

Speculative / optimistic
approach to distributed

computing

When remote information: wait vs. speculate:
! "Parallel
! "Overcomes latency, failures
! "Reconcile in the background
Maintain invariants
! # Maintain dependencies
! # Conflict ⇒ consensus, rollback
! # Automatic: conservative
Application-specific invariants

Consistency in large-scale systems 16

Conc. control constraints

Action: reified operation
Constraint: Application-supplied concurrency

control specification
Binary relations:
•NotAfter! ! " #
• Enables (implication)! ! ! #
•NonCommuting! ! # #

Combinations:
• Antagonistic ! ! "$ #
• Atomic ! ! !" #
• Causal dependence! ! " # % ! ! #

Action-constraint graph ACG

Consistency in large-scale systems 17

Example ACG: calendar

Schedule: sound cut in the graph
Consistency in large-scale systems 18

Per site: Scheduling

Sound schedule:

• Path in the ACG that satisfies constraints

Resolve conflicts:

• Antagonism! ! "$ #

• NonCommuting + Dynamic checks!! # #

Optimal schedule

• Penalise lost work
• IceCube heuristics

Consistency in large-scale systems 19

Convergence: Eventual
consistency

Optimistic: diverge arbitrarily
Common stable prefix
Liveness:

• Every action eventually (aborted
or committed) in prefix

• Consensus on next extension of
prefix

0

0

0

Consistency in large-scale systems 20

Telex

Sharing mutable data in decentralised,
high-latency environments

Speculative/optimistic execution model
Principled

• Well-defined guarantees
• Tailored to application

Separation of concerns

• Takes over system issues
• Developer focuses on semantics

At gforge.inria.fr/projects/telex2
BSD licence

4. Partial replication

21 Consistency in large-scale systems

Total vs. partial order

22

Paxos

AMcast

Consistency in large-scale systems

Partial replication
Partial ordering

23

SOA: total order, replicate at all sites

Partial replication:

• Replicas only at some sites (# 1)
• Replay relevant actions only

Multi-object transactions:

• Commutative pairs not ordered
• Synchronise only conflicting pairs
• Transitive closure of conflicts

Should scale better

Baseline more complex

Consistency in large-scale systems

Partial replication &
consistency

Large-scale distributed system
Many objects
A site replicates only some objects
Occasional multi-object transaction

24

x3

x1

x2

x
y1

y2

y

z3

z2 z

T1

T2

T3T3

T1<T2

T2<T3

T3<T1!!!

5. Conclusion

25 Consistency in large-scale systems

Cluster / distributed system
convergence

Petascale for the masses

• Massive computing, storage is available
• Very non-uniform
• Cloud and Edge computing converge
• Asynchronous, failure-prone ⇒ FLP
• Shared data: Consistency issue

26

Consistency in large-scale systems 27

Application design

Event execution loop + rollback

Spend effort to reduce conflicts!

• Design for commutativity
• Weaken invariants
• Make invariants explicit

Concurrent action pairs

! Commute (no constraints)
! ! >> Antagonistic
! ! ! >> Non-Commuting

Consistency in large-scale systems 28

System design

• Partial replication: execute subset of
operations

• Order only conflicting operations
• Derives from invariants
• Beware transitive conflicts

