Consistency in large-

scale systems
Marc Shapiro, INRIA & LIP6 |. Introduction

TTTTTTTTTTTTTTTT

O
EEEEEEEEEEE
EEEEEEEEEEEEEE AINRIA
EEEEEEEEEEEEEEE
- Réseaux

centre de recherche PARIS - ROCQUENCOURT

et Systémes Répartis 2

Consistent access to mutable
information

Server-resident repository

Sometime in near future...

Tomorrow: * Single, consistent copy
* Petascale + distributed convergence * Remote access
* Fat pipes 7, core connectivity ~ * Centralized management
* Jitter ~,latency => Replicated data
Asynchronous, failure-prone e Copy in each machine
* FLP impossibility * Local reads
* Byzantine behaviours * Multi-master writes
See results from distributed systems * Consistency: FLP

* High-level: In software

Active replication

~
2
(]
v

Objects x,, ...

Replicas, x2, x3,..., y1, y2, ... at sites 1,2, 3, ...

Initiate operation f(x, y|); propagate to other
sites; replay f(x2, y2), y oo

Same operations, different orders?

2. CRDTs

State of the art

Scalable systems:

* Last Writer Wins

* Ad-hoc: Lost work, arbitrary
Strong consistency:

* Maintain unknown invariants

* Single, global execution order

* Replay all operations at all replicas

* Lock-step: No concurrency
Multi-object:

* Total order, total replay across all

objects

Our goal: Relaxed but principled

Commutativity / Eventual
Consistency Theorem

Assuming:
* All concurrent operations commute
* Non-concurrent operations execute in
happens-before order
* All operations eventually execute at every
replica
Then, if clients stop initiating operations, all
replicas eventually converge to the same correct
value

Commutativity Shared ordered-set invariants

Example: shared buffer "Inria"
buf[0] = "I"; buf[1] = "n"; buf[2] = "r"; ...
Sequence of atoms:

* total order

* identical at all sites

* requires consensus

Easy case: disjoint objects

CRDT: Commutative Replicated Data Type
* Trivial: ever-growing set + add
* State of the art: ever-growing ordered set
* Treedoc: efficient, scalable ordered set

I<n<r i<a
* partial order
* |ocal
Treedoc ordered set Balancine the ¢
abstraction alancing the tree
r
=L Inria
| N balance
L s i * Does not commute with concurrent
updates
: * Not essential: abort it in the presence
TID: path = [O|I]* of concurrent updates
Contents: infix order Requires consensus (2- or 3-phase
Non-destructive updates commit), but off critical path
Insert:TIDs do not change Garbage collection

Delete: TIDs do not change; eventually GC leaves

Performance

kB serialised
1600

us

";4 (‘\’

10

s A L. AL LI P L N

|

I
(v }‘i‘ %L' \4,\’\1 v/

Iy
)

r\ﬂL/\’\,ﬁ‘,N} W

no rebalance

Aol
{ i
),\

i

["”\
i b, L, e
o kAT \

Il
ilﬁ/u”\«‘fw
ﬂ'J |

x 10 revisions

en.wikipedia.org/George W_Bush

* |50 kB, most frequently revised

Speculative / optimistic
approach to distributed
computing

When remote information: wait vs. speculate:

Parallel

Overcomes latency, failures
Reconcile in the background

Maintain invariants

X Maintain dependencies
X Conflict = consensus, rollback
X Automatic: conservative

Application-specific invariants

%1000 ops

3. Optimistic replication

Conc. control constraints

Action: reified operation

Constraint: Application-supplied concurrency

control specification
Binary relations:

» NotAfter

e Enables (implication)

* NonCommuting
Combinations:

» Antagonistic

 Atomic

 Causal dependence

Action-constraint graph ACG

a—f
a<lp
a#p

OL—>@[3
a <> B
oa—=>pBra<p

Example ACG: calendar

User Tuesda
Marc : - \ y
1= setDat
/@te@ i Monday
addUser 1
Lamia ! setDate
1 Wednesday

MtgA document
MtgB document

dUser 4
A S —>
|erre/ (hl /se tDate\
createMtg

Monday
addUser ™\ &~ <
Lamla

Schedule: sound cut in the graph

Convergence: Eventual
consistency

O O O0—O00000
O 4, P4 O-O-00

O g0 o000

Optimistic: diverge arbitrarily
Common stable prefix
Liveness:

* Every action eventuall fy (aborted
or committed) in prefix

e Consensus on next extension of
prefix

Per site: Scheduling

Sound schedule:
e Path in the ACG that satisfies constraints
Resolve conflicts:

e Antagonism oa—=<f

e NonCommuting + Dynamic checks o # f3
Optimal schedule

¢ Penalise lost work
¢ |ceCube heuristics

Telex

Sharing mutable data in decentralised,
high-latency environments

Speculative/optimistic execution model
Principled

* Well-defined guarantees

* Tailored to application
Separation of concerns

* Takes over system issues

* Developer focuses on semantics
At gforge.inria.fr/projects/telex2
BSD licence

20

4. Partial replication

21

Partial replication
Partial ordering

SOA: total order, replicate at all sites
Partial replication:
* Replicas only at some sites (= |)
* Replay relevant actions only
Multi-object transactions:
e Commutative pairs not ordered
* Synchronise only conflicting pairs
* Transitive closure of conflicts

Should scale better
Baseline more complex

23

Latency (ms)

Total vs. partial order

10000

ayp

1000 |

AMcast

100

10 1 1
50000 100000 150000 200000 250000 30000C

Delivered msgs per minute
22

Partial replication &
consistency

T
) ;l \L@// !/@]\\Z T2<T3

I
|
\ /
To<Titt (NG \&)/

Large-scale distributed system

Many objects
A site replicates only some objects
Occasional multi-object transaction

24

5. Conclusion

Application design

Event execution loop + rollback
Spend effort to reduce conflicts!
* Design for commutativity
* Weaken invariants
* Make invariants explicit
Concurrent action pairs
Commute (no constraints)

>> Antagonistic
>> Non-Commuting

27

Cluster / distributed system
convergence

Petascale for the masses

* Massive computing, storage is available
* Very non-uniform

* Cloud and Edge computing converge
e Asynchronous, failure-prone = FLP

* Shared data: Consistency issue

26

System design

* Partial replication: execute subset of
operations

e Order only conflicting operations

* Derives from invariants

* Beware transitive conflicts

28

