
Agenda
1. Background: OASIS, ActiveEon

2. Multi-Cores

3. Programming,

Optimizing

Scheduling

4. Enterprise Parallel Computing

D. Caromel, et al.

Strong Programming Model to bridge

Distributed & Multi-Core Computing

Speed: Application + Development: Productivity

Key Objectives

 Parallel Programming Model and Tools

desesperatly needed

 for the masses

 for new architectures (Multi-cores)

 As Effective as possible:

Efficient

However Programmer Productivity is first KSF

 For both Multi-cores and Distributed

Actually the way around

 Some Handling of ``Large-scale’’ (Grid, Clouds)

3
3

1. Background

1. Background

4
4

OASIS Team & INRIA

A joint team, Now about 35 persons

2004: First ProActive User Group

2009, April: ProActive 4.1, Distributed & Parallel:

From Multi-cores to Enterprise GRIDs

5
5

OASIS Team Composition (35)

Researchers (5):
 D. Caromel (UNSA, Det. INRIA)

 E. Madelaine (INRIA)

 F. Baude (UNSA)

 F. Huet (UNSA)

 L. Henrio (CNRS)

PhDs (11):
 Antonio Cansado (INRIA, Conicyt)

 Brian Amedro (SCS-Agos)

 Cristian Ruz (INRIA, Conicyt)

 Elton Mathias (INRIA-Cordi)

 Imen Filali (SCS-Agos / FP7 SOA4All)

 Marcela Rivera (INRIA, Conicyt)

 Muhammad Khan (STIC-Asia)

 Paul Naoumenko (INRIA/Région PACA)

 Viet Dung Doan (FP6 Bionets)

 Virginie Contes (SOA4ALL)

 Guilherme Pezzi (AGOS, CIFRE SCP)

+ Visitors + Interns

 PostDoc (1):
 Regis Gascon (INRIA)

 Engineers (10):

 Elaine Isnard (AGOS)

 Fabien Viale (ANR OMD2, Renault)

 Franca Perrina (AGOS)

 Germain Sigety (INRIA)

 Yu Feng (ETSI, FP6 EchoGrid)

 Bastien Sauvan (ADT Galaxy)

 Florin-Alexandru.Bratu (INRIA CPER)

 Igor Smirnov (Microsoft)

 Fabrice Fontenoy (AGOS)

 Open position (Thales)

 Trainee (2):
 Etienne Vallette d’Osia (Master 2 ISI)

 Laurent Vanni (Master 2 ISI)

 Assistants (2):
 Patricia Maleyran (INRIA)

 Sandra Devauchelle (I3S)Located in Sophia Antipolis, between

Nice and Cannes,

Visitors and Students Welcome!

6
6

Co-developing, Support for ProActive Parallel Suite

Worldwide Customers: Fr, UK, Boston USA

Startup Company Born of INRIA

http://proactive.inria.fr/

7

Multi-Cores

8
8

Symetrical Multi-Core: 8-ways Niagara II

8 cores

4 Native

threads

per core

Linux see

32 cores!

9
9

Sun 16-core Rock: Fall 2009

16 cores

4 native threads per core



 64 “Cores” or “Native Threads” at OS level

10
10

Intel 8-cores, 16-thread Nehalem-based Xeon

processor confirmed (Feb. 2009)

Highly

 NUMA

Not an
SMP:

L1,

 L2, then

 L3
attached

 to a
given

 core

Multi-Cores
A Few Key Points

Moore’s Law rephrased:

 Nb. of Cores double every 18 to 24 months

 Key expected Milestones: Cores per Chips (OTS)
 2010: 32 to 64

 2012: 64 to 128

 2014: 128 to 256

 1 Million Cores Parallel Machines in 2012

 100 M cores coming in 2020

Multi-Cores are NUMA, and turning Heterogeneous (GPU)

 They are turning into SoC with NoC: NOT SMP!

12
12

2. Programming

Optimizing
Parallel Acceleration Toolkit in Java:

Parallelism:

Multi-Core+Distributed

Open Source Used in production by industry

13
13

OW2: Object Web + Orient Ware

14
14

15
15

ProActive Contributors

1616

2. Distributed and Parallel

Active Objects

17
17

18
18

19
1919

A

ProActive : Active objects

Proxy

Java Object

A ag = newActive (“A”, […], VirtualNode)

V v1 = ag.foo (param);

V v2 = ag.bar (param);

...

v1.bar(); //Wait-By-Necessity

V

Wait-By-Necessity

is a

Dataflow

Synchronization

JVM

A

JVM

Active Object

Future Object Request

Req. Queue

Thread

v1v2 ag

WBN!

2020

First-Class Futures

Update

21
2121

Wait-By-Necessity: First Class Futures

ba

Futures are Global Single-Assignment Variables

V= b.bar ()

c

c

c.gee (V)

v

v

b

22
2222

Standard system at Runtime: No Sharing

NoC: Network On Chip
Proofs of Determinism

Key Point:

Software Evolution
 Distributed To Multicores

Multi-Cores: 32 (2010) to 64 to 128 to 256 (2014)

 Shift the execution from several multi-cores executing

 the same application simultaneously to a single, larger

multi-core chip. An application requiring 128 cores to

 correctly execute, can be executed in 2012 on four 32
cores,

 and seamlessly executed in 2016 on a single 128-core
chips

  Smooth evolutivity of applications

 Distributed and Multi-core Platforms

  Also for Data Scalability

24
2424

Standard system at Runtime: No Sharing

NoC: Network On Chip
Proofs of Determinism

25
25

(2) ASP: Asynchronous Sequential Processes

 ASP Confluence and Determinacy

 Future updates can occur at any time

 Execution characterized by the order of request senders

 Determinacy of programs communicating over trees, …

 A strong guide for implementation,

 Fault-Tolerance and checkpointing, Model-Checking, …

2626

TYPED

ASYNCHRONOUS GROUPS

27
2727

A

Creating AO and Groups

Typed Group Java or Active Object

A ag = newActiveGroup (“A”, […], VirtualNode)

V v = ag.foo(param);

...

v.bar(); //Wait-by-necessity

V

Group, Type, and Asynchrony

are crucial for Composition

JVM

28
2828

Broadcast and Scatter

JVM

JVM

JVM

JVM

agcg

ag.bar(cg); // broadcast cg

ProActive.setScatterGroup(cg);

ag.bar(cg); // scatter cg

c1 c2
c3c1 c2
c3

c1 c2
c3c1 c2
c3

c1 c2
c3

c1 c2
c3

s

c1 c2
c3

s

Broadcast is the default behavior

Use a group as parameter, Scattered depends on rankings

29
2929

Dynamic Dispatch Group

JVM

JVM

JVM

JVM

agcg

c1

c2

c3

c4

c5

c6

c7

c8c0

c9c1

c2

c3

c4

c5

c6

c7

c8c0

c9

c1

c2

c3

c4

c5

c6

c7

c8c0

c9

Slowest

Fastest

ag.bar(cg);

Abstractions

for Parallelism

The right Tool to do the Task right

3131

Object-Oriented

SPMD

Key Point

“MPI and programming languages from

the 60’s will not make it”

 Jack Dongarra, 2/13/2009,

 Wake Forest University talk

33
3333

OO SPMD: Object-Oriented SPMD

A ag = newSPMDGroup (“A”, […], VirtualNode)

// In each member

myGroup.barrier (“2D”); // Global Barrier

myGroup.barrier (“vertical”); // Any Barrier

myGroup.barrier (“north”,”south”,“east”,“west”);

A

Still,

not based on raw

messages, but

Typed Method Calls

==> Components

34
3434

OO SPMD: Object-Oriented SPMD

 Motivation

 Use Enterprise technology (Java, Eclipse) for Numerical Parallel

Computing

 Able to express in Java MPI’s Collective Communications:

 broadcast reduce

 scatter allscatter

 gather allgather
Together with

 Barriers, Topologies.

35
35

Application Semantics rather than

Low-Level Architecture-Based Optimization

 MPI: MPI_Send MPI_Recv MPI_Ssend MPI_Irecv

 MPI_Bsend MPI_Rsend MPI_Isend MPI_Ibsend

 What we propose:

 High-level Information from Application Programmer

 Tower Self-Adapting parallel applications

 Examples:

 ro.foo (ForgetOnSend (params));

 ActiveObject.exchange(…params);

Optimizations for Both

Distributed &

Multi-Core

Key Point:
Infrastructure Independence

Application Abstractions

I give you this data and I no longer need it

Not Infrastructure Abstractions

I asynchronous send you this and I do not

lock the buffer

37
37

NAS Parallel Benchmarks

 Experimented on 3D ElectroMagnetism, and Nasa

Benchmarks

 Designed by NASA to evaluate benefits of high

performance systems

 Strongly based on CFD

 5 benchmarks (kernels) to test different aspects of a

system

 2 categories or focus variations:

 communication intensive and computation intensive

38
38

Communication Intensive

CG Kernel (Conjugate Gradient)

Floating point operations

Eigen value computation

High number of

unstructured

communications

• 12000 calls/node

• 570 MB sent/node

• 1 min 32

• 65 % comms/WT

Message density distribution Data density distribution

39
39

Communication Intensive

CG Kernel (Conjugate Gradient)

 Comparable

Performances

Key Point:

Locality will more than ever be

Fundamental

Let the programmer control it

No global shared memory

PGAS like

 Partitioned Global Address Space

But with more

 Flexibility, Dynamicity and Control

One can envision: Spatial view of multicore

41

Research for

High-Level Parallel Abstractions

42
42

GridCOMP Partners

http://www.wmin.ac.uk/
http://www.ibm.com/us/
http://www.atosorigin.com/en-us/Services/Industries/Major_Events/Olympics/
http://www.unimelb.edu.au/
http://www.uchile.cl/uchile.portal

43
4343

Objects to Distributed Components

Typed Group Java or Active Object

V

A

Example of

component

instance

JVM

Truly

Distributed

Components

IoC:

Inversion

Of Control

(set in XML)

44

GCM

Scopes and Objectives:

Grid Codes that Compose and Deploy

No programming, No Scripting, … No Pain

Innovation:

Abstract Deployment

Composite Components

Multicast and GatherCast

MultiCast GatherCast

45
45

Optimizing MxN Operations

2+ composites
can be involved
in the Gather-

multicast

Key Points

about

Parallel Components

Parallelism is captured at the Module

interface

 Identical to Typing for functional aspects

Composition, in a parallel word, becomes

possible

 Configuration of the Parallel aspect

4747

Optimizing

48
48

49
49

IC2D

50
50

IC2D

51
51

ChartIt

52
52

Pies for Analysis and Optimization

53

Video 1:

IC2D Optimizing

Monitoring, Debugging, Optimizing

5454

3. Scheduling

55
55

56
56

Scheduler: User Interface

57

Video 2:

Scheduler, Resource Manager

5858

4. Enterprise Grids,

Clouds: Standards &

Amazon EC2

59
59

GCM Standardization

Grid Component Model

Overall, the standardization is supported by
industrials:

BT, FT-Orange, Nokia-Siemens, NEC,
Telefonica, Alcatel-Lucent, Huawei …

60
60

61

Summary

Summary of

Key Points

 Multi-Cores are NUMA, and turning Heterogeneous (GPU)

 They are turning into SoC with NoC: NOT SMP!

 Smooth evolution needed: Distributed to Multi-core

 A need for a unified Parallel Abstraction:

 Multi-Core + Distributed

 Shall MPI and OpenMP RIP

 Application Abstractions Not Infrastructure

Abstractions

 Maintain strong Programmer control on Locality

Other Evolutions

Scheduling of Asynchronous Tasks,
Workflows, Dynamic Data Driven Execution

Fault-Tolerance + Need for QoS and SLA:

  Self-Adapting Auto-Tuning
systems

64
64

Summary and Perspectives: On-going

65
65

Conclusion: Currently Available

Further into the direction of:

Multi-Core + Distributed

66
66

AGOS: Grid Architecture for SOA

AGOS Solutions

Building a Platform for Agile SOA with Grid

In Open Source with Professional Support

