Strong Programming Model to bridge Distributed & Multi-Core Computing D. Caromel, et al.

Agenda

- 1. Background: OASIS, ActiveEon
- 2. Multi-Cores
- 3. Programming, Optimizing Scheduling
- 4. Enterprise Parallel Computing

outing

Speed: Application + Development: Productivity

Key Objectives

Parallel Programming Model and Tools

- > desesperatly needed
- For the masses
- > for new architectures (Multi-cores)
- □ As Effective as possible:
 - Efficient

However Programmer Productivity is first KSF

□ For both Multi-cores and Distributed

Actually the way around

□ Some Handling of ``Large-scale'' (Grid, Clouds)

1. Background

OASIS Team & INRIA

 A joint team, Now about 35 persons
 2004: First ProActive User Group
 2009, April: ProActive 4.1, Distributed & Parallel: From Multi-cores to Enterprise GRIDs

SIS/

INRIA

OASIS Team Composition (35)

□ Researchers (5):

- D. Caromel (UNSA, Det. INRIA
- E. Madelaine (INRIA)
- F. Baude (UNSA)
- F. Huet (UNSA)
- L. Henrio (CNRS)

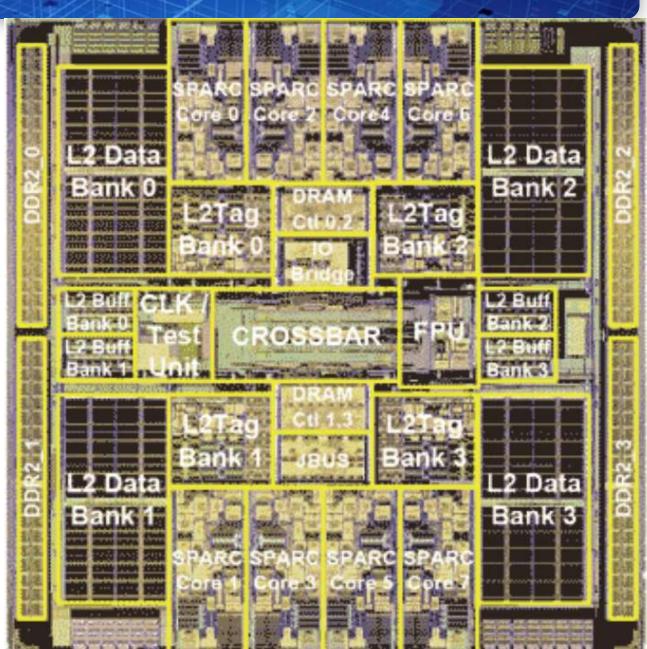
□ PhDs (11):

- Antonio Cansado (INRIA, Conid
- Brian Amedro (SCS-Agos)
- Cristian Ruz (INRIA, Conicyt)
- Elton Mathias (INRIA-Cordi)
- Imen Filali (SCS-Agos / FP7 S
- Marcela Rivera (INRIA, Conicy
- Muhammad Khan (STIC-Asia)
- Paul Naoumenko (INRIA/Régic
- Viet Dung Doan (FP6 Bionets)
- Virginie Contes (SOA4ALL)
- Guilherme Pezzi (AGOS, CIFR

 Control
 Contro
 Control
 Control

Startup Company Born of INRIA

Co-developing, Support for <u>ProActive Parallel Suite</u>
 Worldwide Customers: Fr, UK, Boston USA



Symetrical Multi-Core: 8-ways Niagara II

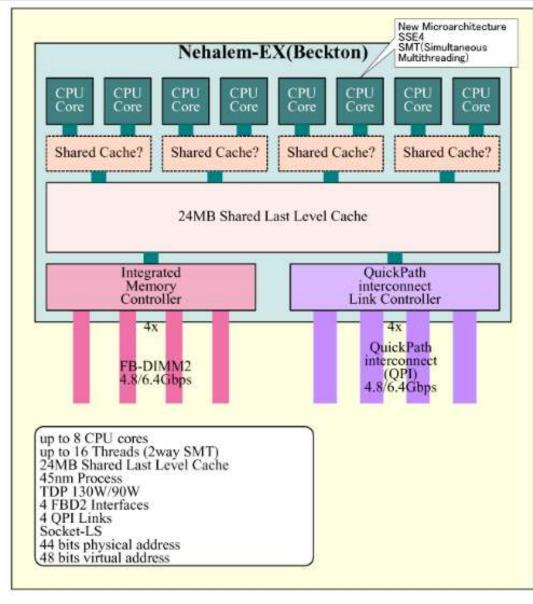
8 cores
 4 Native
 threads
 per core

Linux see 32 cores!

Sun 16-core Rock: Fall 2009

16 cores4 native threads per core

$\Box \rightarrow 64$ "Cores" or "Native Threads" at OS level



Intel 8-cores, 16-thread Nehalem-based Xeon processor confirmed (Feb. 2009)

HighlyNUMA

□ Not an SMP: □L1, \Box L2, then $\Box L3$ attached to a given core

SCALE BEYOND LIMITS

Copyright (c) 2007 Hiroshige Goto All rights reserved.

Nulti-Cores A Few Key Points

□ Moore's Law rephrased:

- Nb. of Cores double every 18 to 24 months
- □ Key expected Milestones: Cores per Chips (OTS)
 - > 2010: 32 to 64
 - > 2012: 64 to 128
 - > 2014: 128 to 256
- □ 1 Million Cores Parallel Machines in 2012
- □ 100 M cores coming in 2020

Multi-Cores are NUMA, and turning Heterogeneous (GPU)
 They are turning into SoC with NoC: NOT SMP!

Parallel Acceleration Toolkit in Java:

Parallelism:

Multi-Core+Distributed

Open Source Used in production by industry

PROGRAMMING

Java Parallel Frameworks for HPC, Multi-Cores, Distribution, Enterprise Grids and Clouds.

Featuring: Async. comms, Master-Worker, Monte-Carlo, SPMD, components and legacy code wrapping.

OPTIMIZING

Eclipse GUI (IC2D) for Developing, Debugging, Optimizing your parallel applications.

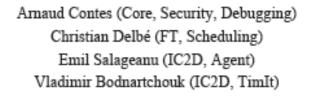
Featuring: graphical monitoring and benchmarking with report generation.

SCHEDULING

Multi-Language Scheduler for Workflows made of C, C++, Java, Scripts, Matlab,

Scilab tasks.

Featuring: graphical user interface, resource acquisition and virtualization.



ProActive Contributors

Abhijeet Gaikwad (Option Pricing) Abhishek-Rajeev Gupta Antonio Cansado Baptiste De Stefano Bastien Sauvan Brian Amedro (SPMD) Cédric Dalmasso (Component) Clement Mathieu (Core. GCM Deployment) Elaine Isnard Elton Mathias Eric Madelaine Etienne Vallette-De-Osia Fabien Viale (Matlab, Scilab) Fabrice Huet (Mobility, P2P) Florin Bratu Franca Perrina Francoise Baude Germain Sigety (Scheduling) Guillaume Laurent Guilherme Perretti Pezzi Imen Filiali Jean-Luc Scheefer (Scheduling)

Jean-Michael Guillamume Johann Fradj (Scheduling) Jonathan Martin Julian Krzeminski Kamran Qadir Khan Muhammad Laurent Vanni Ludovic Henrio Marcela Rivera Mario Leyton (Skeleton) Maxime Menant Nicolas Dodelin Olivier Helin Paul Naoumenko Regis Gascon Tomasz Dobek Vasile Jureschi (Technical Writer) Viet Dong Doan Vincent Cave (Legacy Wrapping) Virginie Contes (OSGi, WS) Yu Feng Yulai Yuan Zhihui Dai

Alexandre di Costanzo (P2P, B&B) Boutheina Bennour Guillaume Chazarain (DGC) Julien Vayssiere (MOP, Active Objects)

Lionel Mestre Laurent Baduel (Group Communications) Matthieu Morel (Initial Component Work) Nadia Ranaldo (Core, Deployment) Romain Quilici

PROGRAMMING

Java Parallel Frameworks for HPC, Multi-Cores, Distribution, Enterprise Grids and Clouds.

Featuring: Async. comms, Master-Worker, Monte-Carlo, SPMD, components and legacy code wrapping.

OPTIMIZING

Eclipse GUI (IC2D) for Developing, Debugging, Optimizing your parallel applications.

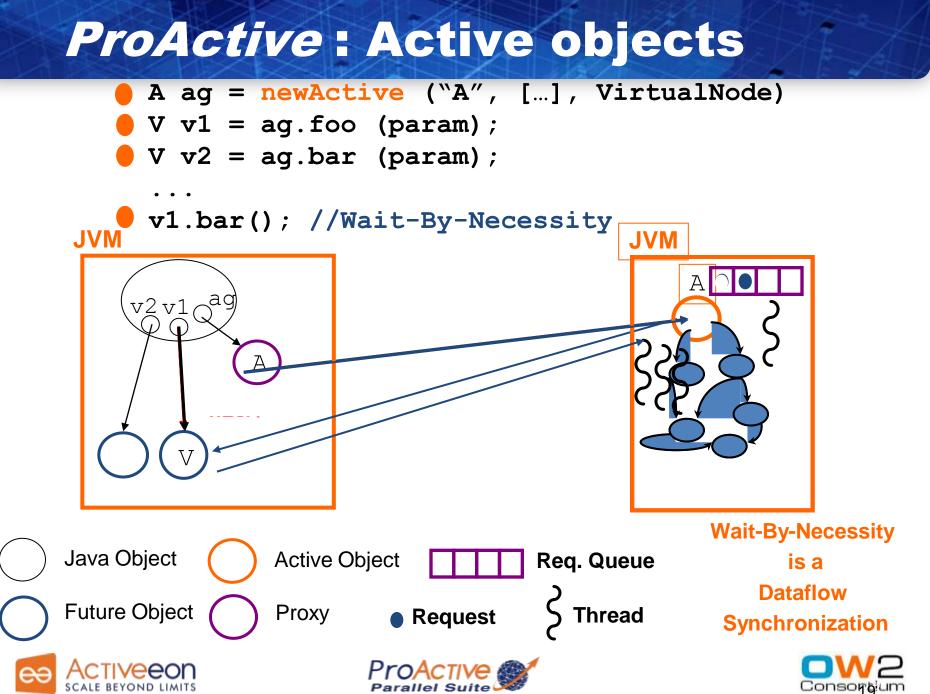
Featuring: graphical monitoring and benchmarking with report generation.

SCHEDULING

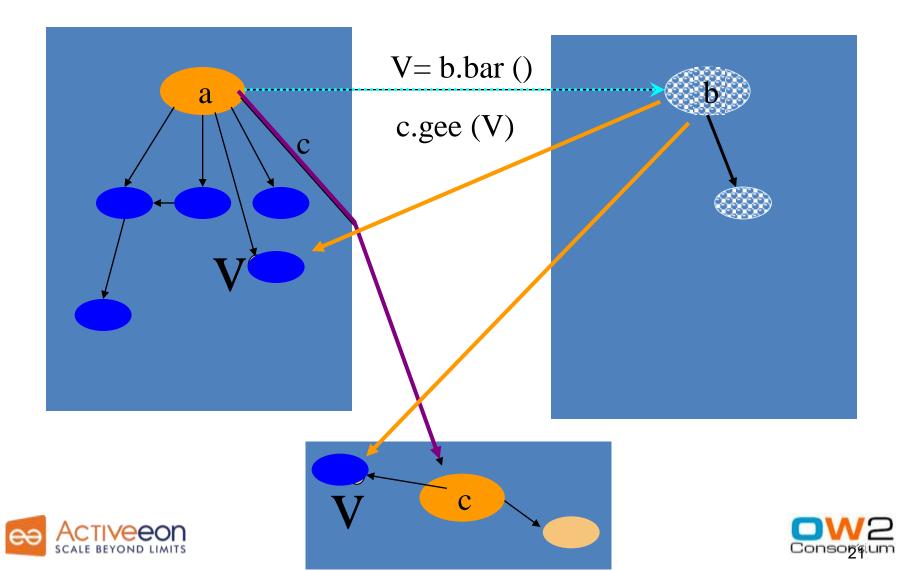
Multi-Language Scheduler for Workflows made of C, C++, Java, Scripts, Matlab, Scilab tasks.

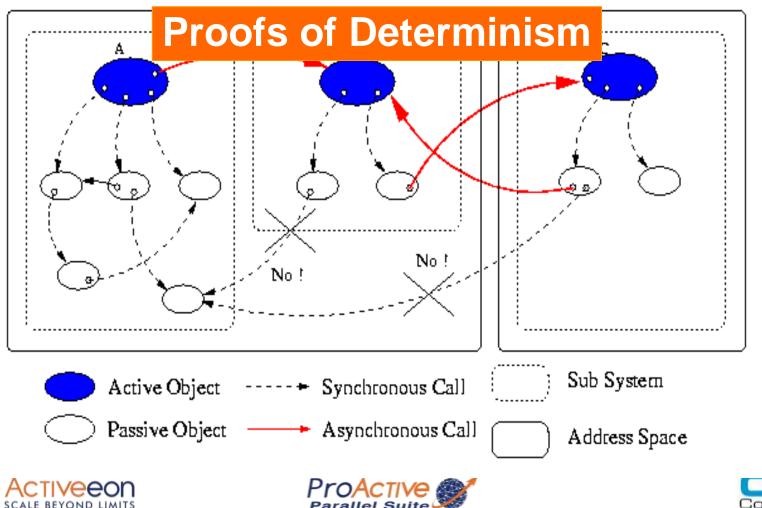
Featuring: graphical user interface, resource acquisition and virtualization.

PROGRAMMING


Java Parallel Frameworks for HPC, Multi-Cores, Distribution, Enterprise Grids and Clouds.

Featuring: Async. comms, Master-Worker, Monte-Carlo, SPMD, components and legacy code wrapping.

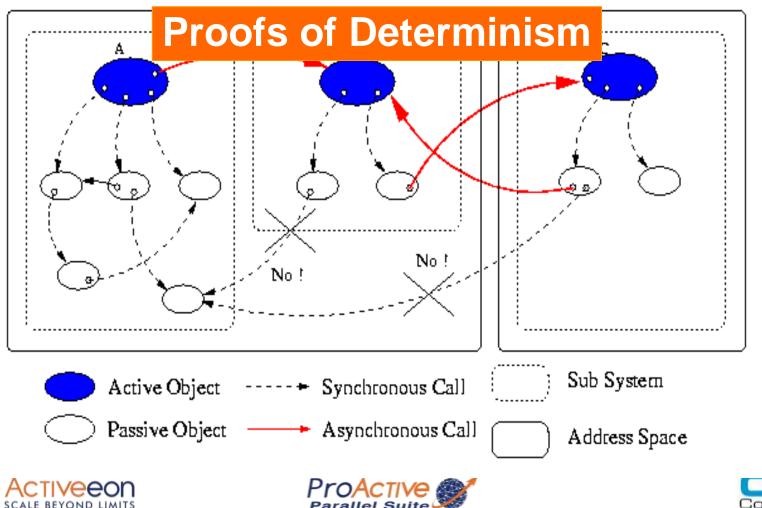



Wait-By-Necessity: First Class Futures

Futures are Global Single-Assignment Variables

Standard system at Runtime: No Sharing

NoC: Network On Chip



Key Point: Software Evolution

- **Distributed To Multicores**
- □ Multi-Cores: 32 (2010) to 64 to 128 to 256 (2014)
- □ Shift the execution from several multi-cores executing
- □ the same application simultaneously to a single, larger
- □ multi-core chip. An application requiring 128 cores to
- □ correctly execute, can be executed in 2012 on four 32 cores,
- and seamlessly executed in 2016 on a single 128-core chips
 - Smooth evolutivity of applications Distributed and Multi-core Platforms

Standard system at Runtime: No Sharing

NoC: Network On Chip

(2) ASP: Asynchronous Sequential Processes

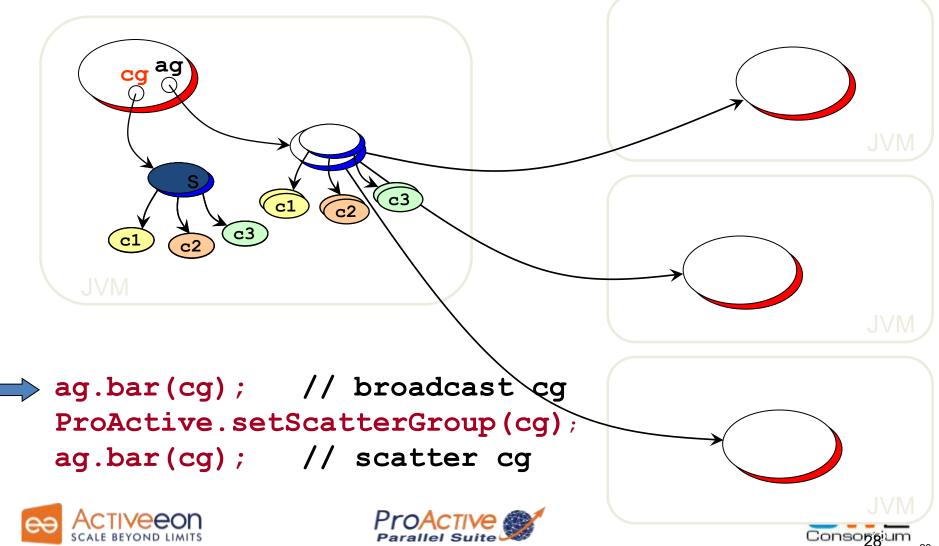
 α

$$\frac{(a,\sigma) \rightarrow_{S} (a',\sigma')}{\alpha[a;\sigma;\iota;F;R;f] \parallel P \longrightarrow \alpha[a';\sigma';\iota;F;R;f] \parallel P} (\text{LOCAL}) \qquad \text{Local}$$

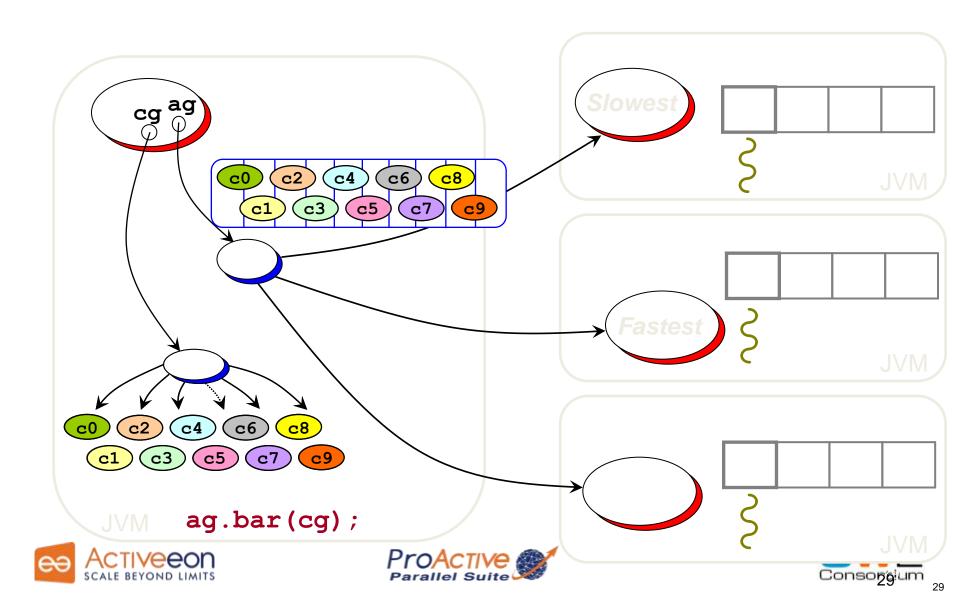
$$\frac{\gamma \text{ fresh activity } \iota' \notin dom(\sigma) \quad \sigma' = \{\iota' \mapsto AO(\gamma)\} :: \sigma}{\sigma_{\gamma} = copy(\iota'',\sigma) \quad Service = (\text{ if } m_{j} = \emptyset \text{ then } FifoService \text{ else } \iota''.m_{j}())}{\alpha[\mathcal{R}[Active(\iota'',m_{j})];\sigma;\iota;F;R;f] \parallel P} (\text{NEWACT})} (\text{NEWACT}) \qquad \text{Creating an } Activity$$

$$\frac{\sigma_{\alpha}(\iota) = AO(\beta) \quad \iota'' \notin dom(\sigma_{\beta}) \quad f_{i}^{\alpha \to \beta} \text{ new future } \iota_{f} \notin dom(\sigma_{\alpha}) \\ \sigma'_{\beta} = Copy\&Merge(\sigma_{\alpha},\iota';\sigma_{\beta},\iota'') \quad \sigma'_{\alpha} = \{\iota_{f} \mapsto fut(f_{i}^{\alpha \to \beta})\} :: \sigma_{\alpha}} (\text{REQUEST}) \qquad \text{Sending a } Request$$

TYPED ASYNCHRONOUS GROUPS



Creating AO and Groups A ag = newActiveGroup ("A", [...], VirtualNode) V v = ag.foo(param);v.bar(); //Wait-by-necessity JVM V Group, Type, and Asynchrony Typed Group(Java or Active Object are crucial for Composition Consog


Broadcast and Scatter

Broadcast is the default behavior

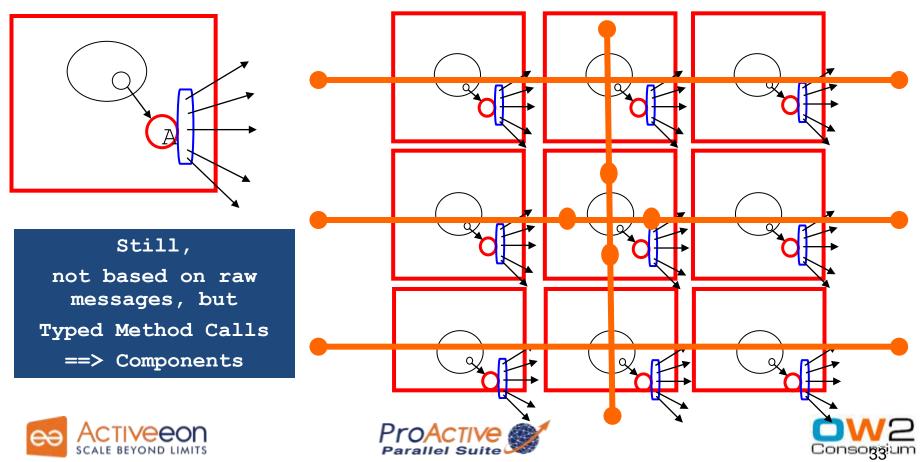
Use a group as parameter, Scattered depends on rankings

Dynamic Dispatch Group

Abstractions for Parallelism

The right Tool to do the Task right

- □ "MPI and programming languages from the 60's will not make it"
- **Jack Dongarra,** 2/13/2009,
- Wake Forest University talk


OO SPMD: Object-Oriented SPMD

A ag = newSPMDGroup ("A", [...], VirtualNode)

// In each member

- myGroup.barrier ("2D"); // Global Barrier
- myGroup.barrier ("vertical"); // Any Barrier

myGroup.barrier ("north","south","east","west");

OO SPMD: Object-Oriented SPMD

Motivation

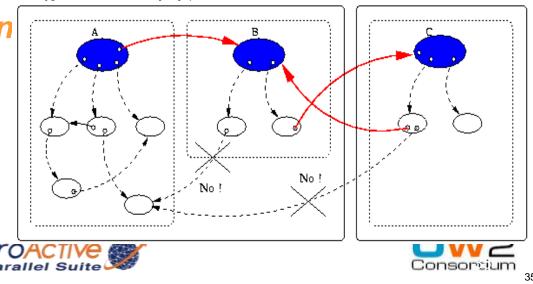
Use <u>Enterprise</u> technology (Java, Eclipse) for Numerical Parallel Computing

□ Able to express in Java MPI's Collective Communications:

broadcast reduce
scatter allscatter
gather allgather

□ Together with

Barriers, **Topologies**.



Application Semantics rather than Low-Level Architecture-Based Optimization

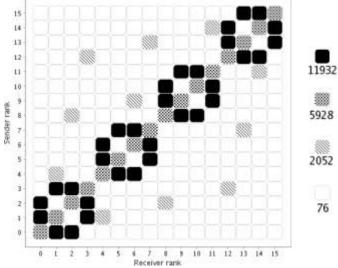
- MPI: MPI_Send MPI_Recv MPI_Ssend MPI_Irecv MPI Bsend MPI_Rsend MPI_Isend MPI_Ibsend
- □ What we propose:
 - **High-level Information from Application Programmer**
 - Tower Self-Adapting parallel applications
- □ Examples:
 - ro.foo (ForgetOnSend (params));
 - ActiveObject.exchan
- → Optimizations for Both
- → Distributed &
- → Multi-Core

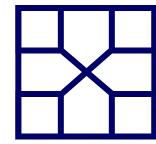
Key Point: Infrastructure Independence

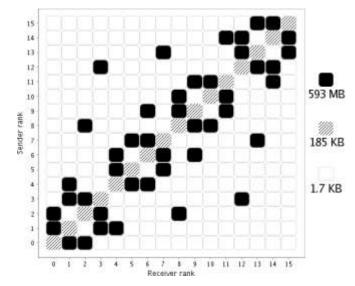
Application Abstractions
 I give you this data and I no longer need it
 Not Infrastructure Abstractions
 I asynchronous send you this and I do not lock the buffer

NAS Parallel Benchmarks

- Experimented on 3D ElectroMagnetism, and Nasa Benchmarks
- Designed by NASA to evaluate benefits of high performance systems
- Strongly based on CFD
- 5 benchmarks (kernels) to test different aspects of a system
- □ 2 categories or focus variations:
 - communication intensive and computation intensive



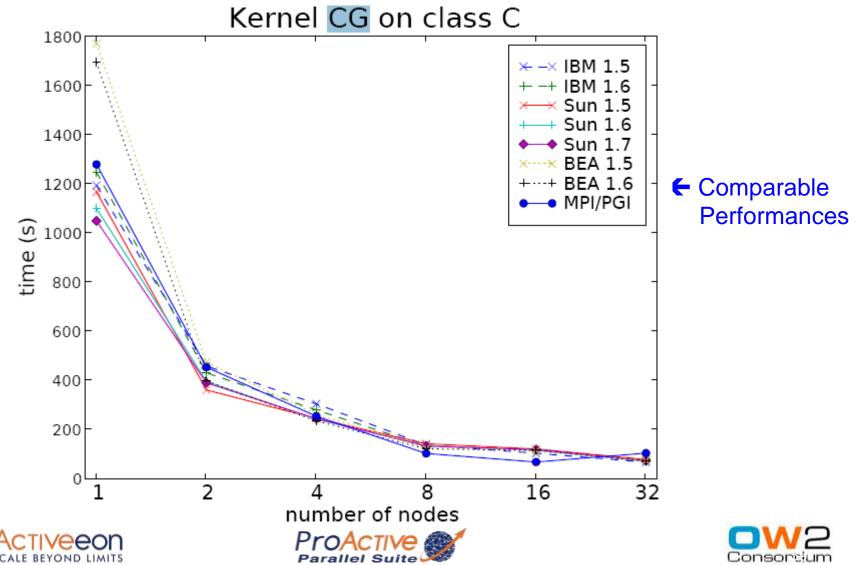



Communication Intensive CG Kernel (Conjugate Gradient)

 Floating point operations
 Eigen value computation
 High number of unstructured communications

- 12000 calls/node
- 570 MB sent/node
- 1 min 32
- 65 % comms/WT

Data density distribution



Message density distribution

Communication Intensive CG Kernel (Conjugate Gradient)

Key Point: Locality will more than ever be Fundamental

Let the programmer control it
 No global shared memory
 PGAS like
 Partitioned Global Address Space
 But with more
 Flexibility, Dynamicity and Control

One can envision: Spatial view of multicore

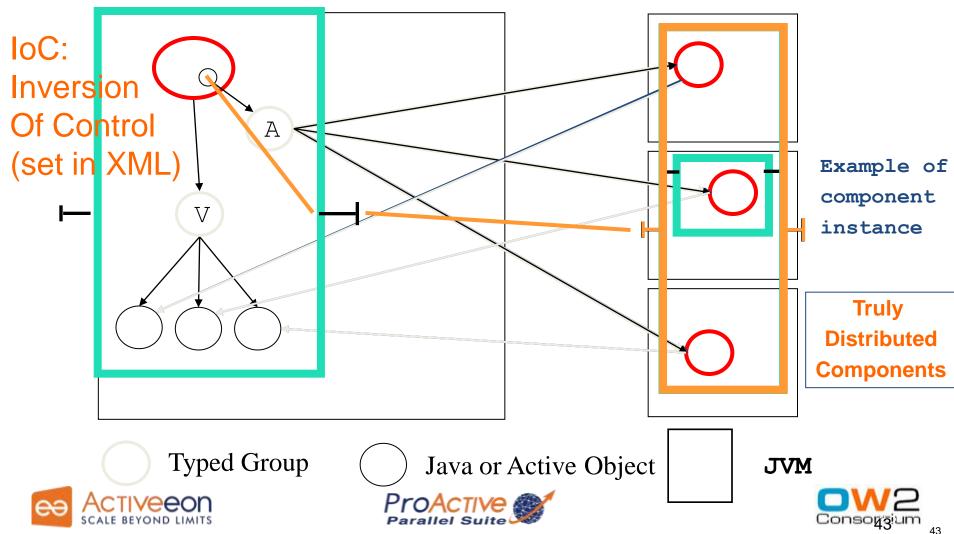
Research for High-Level Parallel Abstractions

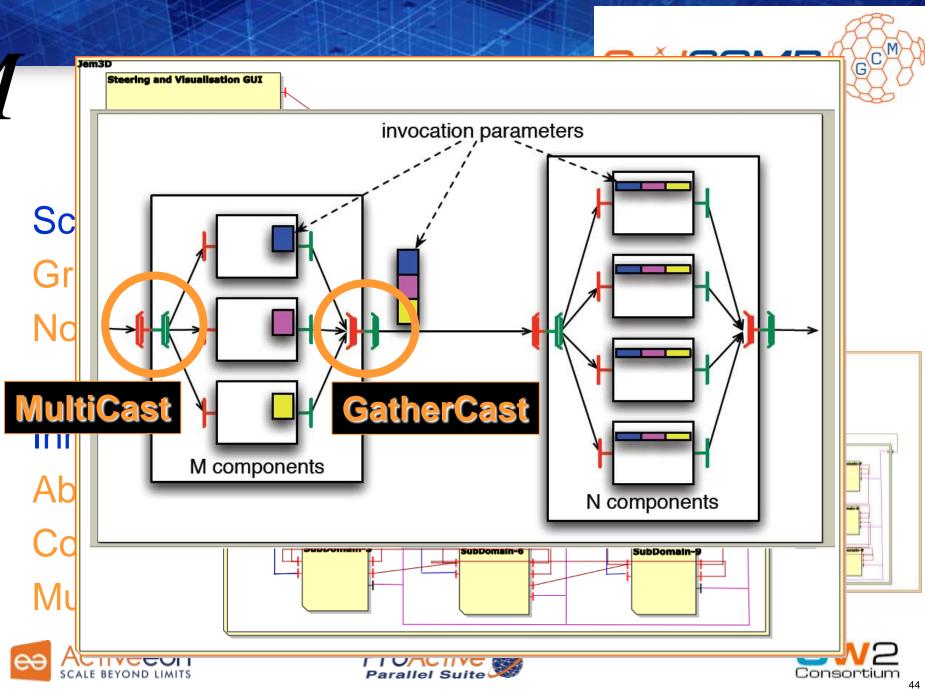
GridCOMP Partners

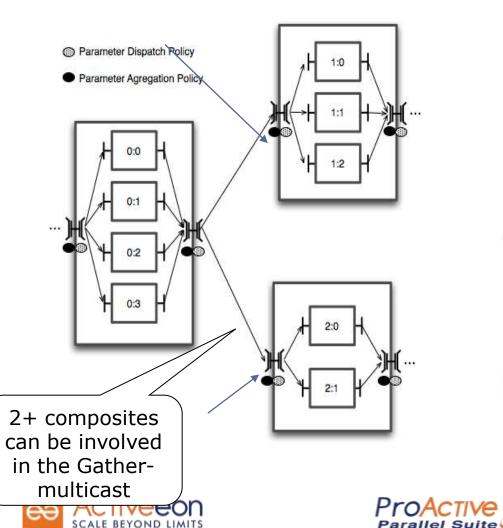
University of Westminster

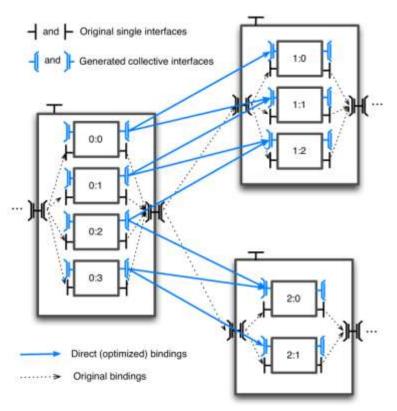
_			-		-				
-	-	-	-		-				
-	-	-	-		_				
-				-	-				
-	-		-		-				
-	-	-	-	-	-				
warments.	and the second	-	-	-	-	_			
_	-	-	-		-	100			

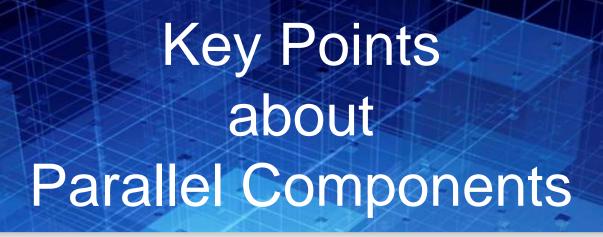
THE UNIVERSITY OF MELBOURNE








Objects to Distributed Components



Optimizing MxN Operations

- □Parallelism is <u>captured</u> at the Module <u>interface</u>
- Identical to Typing for functional aspects
- □<u>Composition</u>, in a parallel word, becomes possible
- □ <u>Configuration</u> of the Parallel aspect

PROGRAMMING

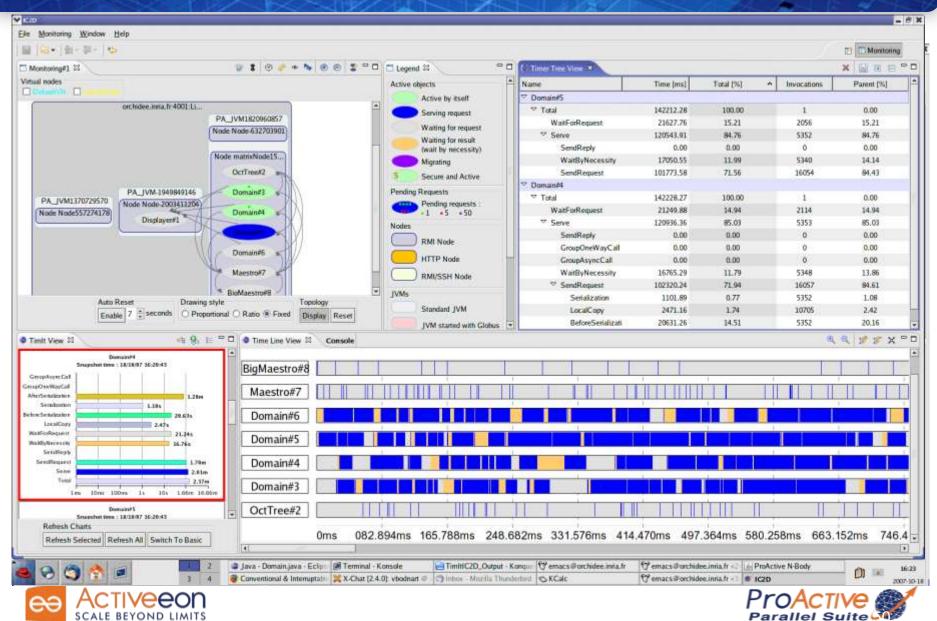
Java Parallel Frameworks for HPC, Multi-Cores, Distribution, Enterprise Grids and Clouds.

Featuring: Async. comms, Master-Worker, Monte-Carlo, SPMD, components and legacy code wrapping.

OPTIMIZING

Eclipse GUI (IC2D) for Developing, Debugging, Optimizing your parallel applications.

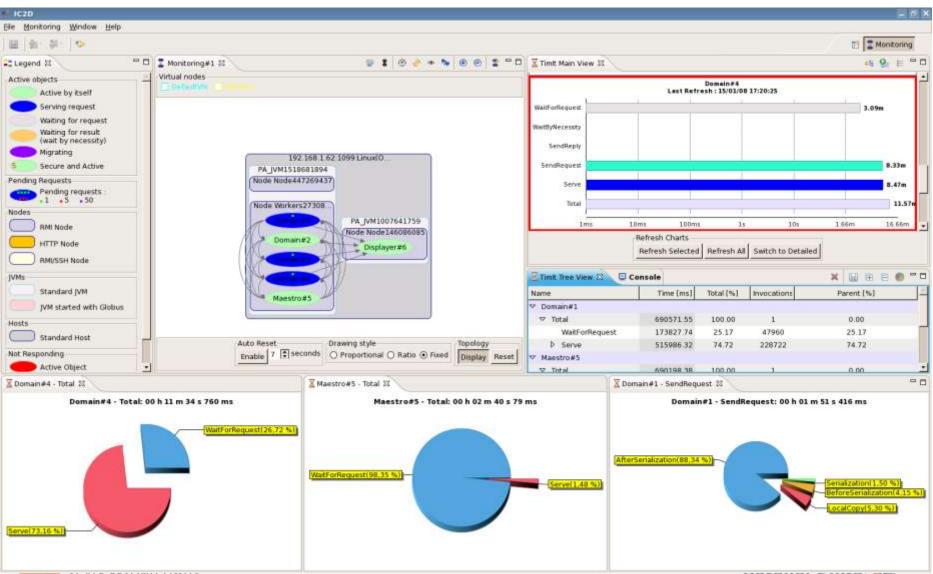
Featuring: graphical monitoring and benchmarking with report generation.



IC2D

Monitoring View Job Monitoring View - 0 X Monitoring - Eclipse SDK File Edit Navigate Search Project Run Control Monitoring Window Help 🔂 + 💁 🛷 🗂 + 🔛 🍙 📾 🖓 - 🌾 + + - + 🗊 🕲 😭 💈 Monitoring 📝 Launcher 🚸 Plug-in De... ⊙ □ □ A 😯 Legend 🖳 Job Monito... 🖾 - 8 📱 Monitoring 🗙 Virtual nodes EE Renderer 🛏 📖 🖓 🔲 Dispatcher 🗌 User ✓ □☐ DefaultVN (JOB-135745762) * bebita.inria.fr:1099:OS u.. bebita.inria.fr:1099:OS un PA_IVM1357457629_be. Node Node60562498. PA_JVM1357457629_ DinnerLayout#2 Node Node605624! Table#3 ODinnerLayout#2 PA_JVM-1631909824_b.. A WM-436155261 be ... PA_JVM-1672076495_b... PA_JVM-294719007_be.. Philosopher#4 Node Renderer1307... CTable#3(JOB-13) Node Renderer-127 ... Node Dispatcher 5 ... Node-User16026446 ... CBDRendering... AC3DDispatche... C3DRendering... Philosopher#5 C3DUser#13 OPhilosopher#4() Philosopher#6 OPhilosopher#5() Philosopher#7 OPhilosopher#6() Philosopher#8 Philosopher#7() OPhilosopher#8(J 🔝 sidonie.inria.fr:1099:OS u duff.inria.fr:1099:OS und.. sidonie.inria.fr:1099:OS ... Dispatcher (JOB--167207649 PA_IVM1530781642_du.. PA_JVM-772843461_si.. C User (JOB-294719007) ∇ Node Renderer1174 ... Node Renderer-151... Node Node-4551863... C3DRendering... C3DRendering... bebita.inria.fr:1099:OS un PA_JVM-294719007_I ☑ Display topology ○ Proportional ○ Ratio ● Filaire Reset Topology Monitoring enable Node User1602644 OC3DUser#13(JC 🔓 🚮 🛃 🖳 + 📬 + 🐞 🖓 🗖 📮 Console 🖾 🏹 🖵 Renderer (JOB--1672076495 Monitoring ∇ bebita.inria.fr:1099:OS un 15:09:15 => NodeObject id=Node-455186381 already monitored, ckeck for new active objects PA_JVM-1631909824_ ∇ ¥ > > *

IC2D



ChartIt

SCALE BEYOND LIMITS

Pies for Analysis and Optimization

SCALE BETUND LIMITS

Parallel Sulle

Video 1: IC2D Optimizing Monitoring, Debugging, Optimizing

PROGRAMMING

Java Parallel Frameworks for HPC, Multi-Cores, Distribution, Enterprise Grids and Clouds.

Featuring: Async. comms, Master-Worker, Monte-Carlo, SPMD, components and legacy code wrapping.

OPTIMIZING

Eclipse GUI (IC2D) for Developing, Debugging, Optimizing your parallel applications.

Featuring: graphical monitoring and benchmarking with report generation.

SCHEDULING

Multi-Language Scheduler for Workflows made of C,

C++, Java, Scripts, Matlab, Scilab tasks.

Featuring: graphical user interface, resource acquisition and virtualization.

Scheduler: User Interface

e <u>W</u> indow <u>H</u> el	p.																
																🗈 🖽 Sched	uler
Jobs 🛙													4 目 四~		※ ~ 昭 🔳	(a) (a) (a) (a) (a)	1
		Pending	(8)				R	unning (13))						Finished ()	1)	
ld State	User	Priority	Nan	1e	Id	State	Progress	# Finishe	User	Priority	Nam	Id	State	User	Priority	Name	
72 Pending	user1	Low	job_2_1	asks	54	Running		1/2	user1	Low	job_2_t	152	Finished	userl	Low	job_2_tasks	
73 Pending	userl	Low	job_2_1	asks	55	Running		0/2	user1	Low	ob_2_t	167	Finished	userl	Normal	job_2_tasks	
74 Pending	userl	Low	job_2_1	asks	56	Running		1/2	user1	Low	job_2_t	171	Finished	userl	Normal	job_2_tasks	
76 Pending	userl	Low	job_2_1	asks	160	Running		1/2	user1	Low	job_2_t	153	Finished	user1	Low	job_2_tasks	
77 Pending	userl	Low	job_2_1	asks	161	Running		1/2	user1	Low	job_2_t	175	Finished	user1	Normal	job_2_tasks	
78 Pending	userl	Low	job_2_1	asks	162	Running		1/2	user1	Low	job_2_t	154	Finished	user1	Low	job_2_tasks	
79 Pending	userl	Low	job_2_1	asks	163	Running		1/2	user1	Low	job_2_t	155	Finished	userl	Low	job_2_tasks	
80 Pending	user1	Low	job_2_1	asks	164	Running		1/2	user1	Low	job_2_t	156	Finished	userl	Low	job_2_tasks	
			165	Running		1/2	user1	Low	job_2_t	157	Finished	userl	Low	job_2_tasks			
					166	Running		1/2	user1	Low	job_2_t	158	Finished	userl	Low	job_2_tasks	
					168	Running		0/2	user1	Low	job_2_t	159	Finished	userl	Low	job_2_tasks	
					169	Running		0/2	user1	Low	job_2_t						
					170	Runnina		0/2	user1	Low	inh 7 t ~						
					tel i							-					
								STARTED	2								
Console 📱 Tas	ks 23 [Users											lot 🛄 🗖	o Info 13	Result	Preview	1.65
Job 55 has 2 tasks										Prop	erty	Value					
state	Nan	ne	Host name	Start time	6 U I	Finished time	Re-rur	Descripti	ion				ld		55	18	
5000: Running	tas	1	eon8.inria.fr	16:09:28	08/27/08	Not yet	0/3	task Wait	tAndPrir	ıt - will sle	ep for 3s		Stat	e	Ri.	unning	
5000: Running	tas	2	eon8.inria.fr	16:09:28	08/27/08	Not yet	0/1	task Wait	tAndPrir	rt - will sle	ep for 20s		Nam	ie	jot	b_2_tasks	
													Prior	ity	Lo	w	
													Pen	ding tasks	number 0		
															number 2		
													Finis	hed tasks	number 0		
													Tota	l tasks nur	nber 2		
													Subr	nitted tim	e 16	:09:28 08/27/08	

56

Video 2: Scheduler, Resource Manager

4. Enterprise Grids, Clouds: Standards & Amazon EC2

GCM Standardization

Grid Component Model

Overall, the standardization is supported by industrials:

BT, FT-Orange, Nokia-Siemens, NEC, Telefonica, Alcatel-Lucent, Huawei ...

GRIDS

CLOUDS

SERVICE INFRASTRUCTURES

GRIDS for Finance & Telecommunications

interation & & pointer: www.etsl.org/plugtests/GRID2008/GRID.htm

Information & registration at http://www.etsi.org/plugtests/GRID09/GRID.htm

PLUGTESTS

30 NOV. - 02 DEC.

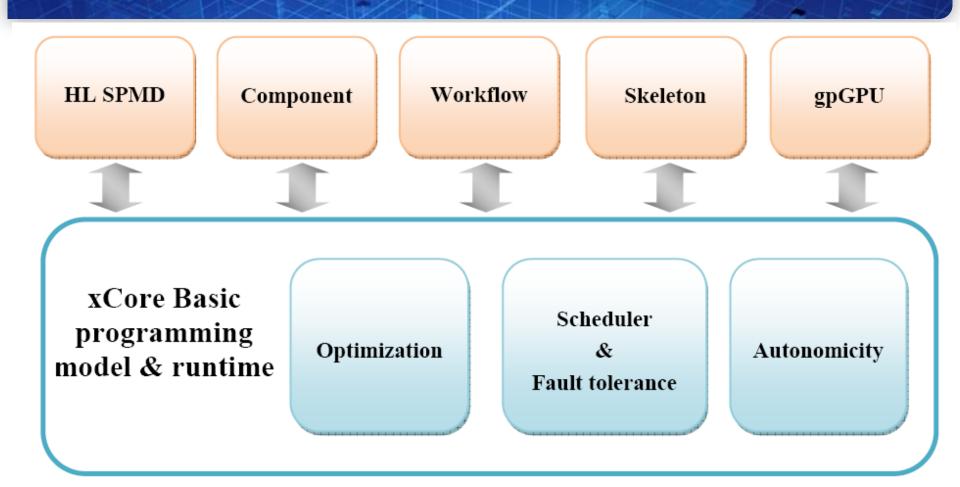
WORKSHOP

02 - 03 DEC.

Summary of Key Points

Multi-Cores are NUMA, and turning Heterogeneous (GPU)

- They are turning into SoC with NoC: NOT SMP!
- Smooth evolution needed: Distributed to Multi-core
- A need for a unified Parallel Abstraction:
 Multi-Core + Distributed
- □ Shall MPI and OpenMP RIP
 - Application Abstractions Not Infrastructure Abstractions

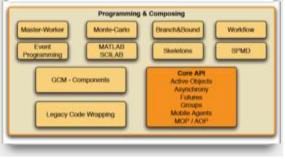

Maintain strong Programmer control on Locality

Scheduling of Asynchronous Tasks, Workflows, Dynamic Data Driven Execution

Fault-Tolerance + Need for QoS and SLA:
 Self-Adapting Auto-Tuning systems

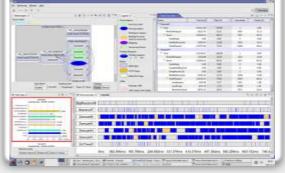
Summary and Perspectives: On-going

Heterogeneous cores



Conclusion: Currently Available

ProActive Sarallel Suite


PROGRAMMING

Java Parallel Frameworks for HPC, Multi-Cores, Distribution, Enterprise Grids and Clouds.

OPTIMIZING

Eclipse GUI (IC2D) for Developing, Debugging, Optimizing your parallel applications.

SCHEDULING

Multi-Language Scheduler

for Workflows made of C, C++, Java, Scripts, Matlab, Scilab tasks.

2.00	101											
			Tente (1)		Paring 118							
-	statu -	10000	marty .	bare-	1.86	These	Pagett	+ 11104	1000	marks	1.84	
10	Families	-mini	5,met	34,3,546	1.94	Avertig	100111	1.0	-	100	100,2	
275	Painting	1000	1.04	395,2,2869	- 20	BARRIE .		11 840		184	1130	
3.98	President	- 491	Low	106,2,5999	240	NAME	100		-	100	推动	
100	Painting	- 1001	1.644	38,1,1464	240	hong	100	1.0	and a	1444	14.2	
3.71	human	-0001	(Jack	00,2,5449	341	8.00 g		1/9		100	14.1	
24	Particip	and.	Low .	\$8,1,5491	34	Berri .	100	- 24	-	1.144.1	14.7	
1.74	Ferritry .	- 4973	ine .	395,3,2888	341	Notes:	100	1.0		ite	神风	
100	Petitig		100	39.2.2889	394	Berry .		52	-	100	10.2	
					1345	Brene .		1,0	-	100	34.2	
					244	Bring.		. 44	-	144	10,7	
					100	weeks .		60	-	100	10.2	
					364	NAME		1,2	1001	3.84	10.1	
					2.65	ALCOHOL:		811		1 has	100.1	

Further into the direction of: Multi-Core + Distributed

AGOS: Grid Architecture for SOA

Building a Platform for Agile SOA with Grid

□AGOS Solutions

In Open Source with Professional Support

