
ProActive SPMD
and Fault Tolerance
Protocol and Benchmarks

Brian Amedro et al.

INRIA - CNRS

1

1st workshop INRIA-Illinois

June 10-12, 2009

Paris

Thursday, June 11, 2009

Outline

• ASP Model Overview

• ProActive SPMD

• Fault Tolerance

• Benchmarks

2

Thursday, June 11, 2009

• Communication with message-passing

– Request / Reply

– No memory sharing

• Asynchronous request services

– Request queue

– Rendezvous

– Future with wait-by-necessity

• Confluence and determinacy

– Causal ordering

– Activity state characterization

• Java implementation

Asynchronous Sequential Process

1 2

1 2 3 P1

P2

3

3

Denis Caromel and Ludovic Henrio and Bernard Serpette

Asynchronous and Deterministic Objects, POPL!04

Thursday, June 11, 2009

• Communication with message-passing

– Request / Reply

– No memory sharing

• Asynchronous request services

– Request queue

– Rendezvous

– Future with wait-by-necessity

• Confluence and determinacy

– Causal ordering

– Activity state characterization

• Java implementation

Asynchronous Sequential Process

1 2

1 2 3 P1

P2

4

3

Denis Caromel and Ludovic Henrio and Bernard Serpette

Asynchronous and Deterministic Objects, POPL!04

Thursday, June 11, 2009

• Communication with message-passing

– Request / Reply

– No memory sharing

• Asynchronous request services

– Request queue

– Rendezvous

– Future with wait-by-necessity

• Confluence and determinacy

– Causal ordering

– Activity state characterization

• Java implementation

Asynchronous Sequential Process

5

1 2

1 2 P1

P2

3

RDV

Denis Caromel and Ludovic Henrio and Bernard Serpette

Asynchronous and Deterministic Objects, POPL!04

Thursday, June 11, 2009

• Communication with message-passing

– Request / Reply

– No memory sharing

• Asynchronous request services

– Request queue

– Rendezvous

– Future with wait-by-necessity

• Confluence and determinacy

– Causal ordering

– Activity state characterization

• Java implementation

Asynchronous Sequential Process

6

1 2

1 2 P1

P2

3

1

Futures and WBN

2 1

Denis Caromel and Ludovic Henrio and Bernard Serpette

Asynchronous and Deterministic Objects, POPL!04

Thursday, June 11, 2009

• Communication with message-passing

– Request / Reply

– No memory sharing

• Asynchronous request services

– Request queue

– Rendezvous

– Future with wait-by-necessity

• Confluence and determinacy

– Causal ordering

– Activity state characterization

• Java implementation

Asynchronous Sequential Process

7

1 2

1 2 3

1 2

3 1 3

3

2

Denis Caromel and Ludovic Henrio and Bernard Serpette

Asynchronous and Deterministic Objects, POPL!04

point-to-point FIFO order causal ordering

Thursday, June 11, 2009

• Communication with message-passing

– Request / Reply

– No memory sharing

• Asynchronous request services

– Request queue

– Rendezvous

– Future with wait-by-necessity

• Confluence and determinacy

– Causal ordering

– Activity state characterization

• Java implementation

Asynchronous Sequential Process

8

1 2

1 2 3

1 2

3 1 3

3

2

Denis Caromel and Ludovic Henrio and Bernard Serpette

Asynchronous and Deterministic Objects, POPL!04

point-to-point FIFO order causal ordering

Thursday, June 11, 2009

• Communication with message-passing

– Request / Reply

– No memory sharing

• Asynchronous request services

– Request queue

– Rendezvous

– Future with wait-by-necessity

• Confluence and determinacy

– Causal ordering

– Activity state characterization

• Java implementation

Asynchronous Sequential Process

9

Denis Caromel and Ludovic Henrio and Bernard Serpette

Asynchronous and Deterministic Objects, POPL!04

http://proactive.inria.fr

Thursday, June 11, 2009

http://proactive.inria.fr
http://proactive.inria.fr

ProActive OO-SPMD

Objectives

• Provide an MPI-like programming model

• Ease the porting an MPI application to ProActive

• Give Object Oriented to SPMD model

10

Thursday, June 11, 2009

ProActive OO-SPMD

Features

• Asynchronous collective operations
Asynchronous barrier

• Asynchronous group communication
Scattering, gathering

• Take into account topology
Optimized algorithm

11

Thursday, June 11, 2009

Fault Tolerance with ASP

Objectives

• Transparency
No piece of code dedicated to Fault Tolerance in applications

• Portability
No assumption about underlying hardware

• Consistency

12

Thursday, June 11, 2009

Fault Tolerance with ASP

Propositions

• Rollback Recovery

• TTC + Communication Induced Checkpointing: Transparency
No programmer intervention

• Constrained Checkpointability: Portability
No Checkpoint during a service
Un-consistency of recovery lines

13

Christian Delbé, PhD Thesis, 2007
Tolérance aux pannes pour objets actifs asynchrones -
protocole, modèle et expérimentations

Thursday, June 11, 2009

Principles of the Protocol

Fault Tolerance with ASP

14

i

Q1

Q2

Q3

Q4
Ci[Q1,Q2,Q4]

n

Q1 Q2 Q4

Thursday, June 11, 2009

Fault Tolerance with ASP

Principles of the Protocol

• Orphan and In-transit Messages

• Promised Requests

• Request Reception History

15

Thursday, June 11, 2009

Fault Tolerance with ASP

Orphan Messages

16

i

Ci
n+1

j

Q1

Cj[Q0]
n

Q0

Cj[Q1]
n+1

Q1 R1

Q1 is an Orphan Request

Thursday, June 11, 2009

n+1

n+1n

Fault Tolerance with ASP

Promised Request

17

i

Ci
n+1

j

Q1

Cj [Qi,j]
n+1

Qi,j R1Q1

i

j

Q1

Q1 R1Q0

synchronization with the
actual request arrival

Thursday, June 11, 2009

Fault Tolerance with ASP

In-transit Messages

18

j

Cj
n

k

Q0

Q0

R1

i

Ci
n

Ck
n

Q2

Q0 is an In-transit Request

Thursday, June 11, 2009

Fault Tolerance with ASP

Request Reception History

19

j

Cj
n+1

k

Q0
R1

i

Ci
n+1

Ck
n

Q1

Q1Q0

Ck
n+1

Thursday, June 11, 2009

Fault Tolerance with ASP

Synthesis

• Orphan Request
Replace with a promised request with wait-by-necessity

• In-transit Requests
Reception of such a request is journalized into a request reception history

• In-transit Reply
Can’t happen: occur after the reception of an orphan request, so a
checkpoint have been performed

20

Thursday, June 11, 2009

Benchmarking Fault Tolerance

• NAS Parallel Benchmarks

• 5 kernels : EP, CG, FT, MG, IS

• About 10,000 LOC

21

Thursday, June 11, 2009

Benchmarking Fault Tolerance

22

0

10.0

20.0

30.0

40.0

2 4 8 16 32

0

8

15

23

30

NAS Benchmark : CG.A
C

h
ec

kp
o
in

t
si

ze
 (

M
B

)

nodes

T
im

e
(s

ec
)

Checkpoint size (MB) T standard
T without checkpoints T with checkpoints

Thursday, June 11, 2009

Benchmarking Fault Tolerance

23

0

100

200

300

400

2 4 8 16 32

0

100

200

300

400

NAS Benchmark : CG.C
C

h
ec

kp
o
in

t
si

ze
 (

M
B

)

nodes

T
im

e
(s

ec
)

Checkpoint size (MB) T standard
T without checkpoints T with checkpoints

Thursday, June 11, 2009

Thank you for your attention

24

Thursday, June 11, 2009

