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• Communication with message-passing

– Request / Reply

– No memory sharing

• Asynchronous request services

– Request queue

– Rendezvous

– Future with wait-by-necessity

• Confluence and determinacy

– Causal ordering

– Activity state characterization

• Java implementation

Asynchronous Sequential Process

1  2

1 2 3 P1

P2

3

3

Denis Caromel and Ludovic Henrio and Bernard Serpette

Asynchronous and Deterministic Objects, POPL!04

Thursday, June 11, 2009



• Communication with message-passing

– Request / Reply

– No memory sharing

• Asynchronous request services

– Request queue

– Rendezvous

– Future with wait-by-necessity

• Confluence and determinacy

– Causal ordering

– Activity state characterization

• Java implementation

Asynchronous Sequential Process

1  2

1 2 3 P1

P2

4

3

Denis Caromel and Ludovic Henrio and Bernard Serpette

Asynchronous and Deterministic Objects, POPL!04

Thursday, June 11, 2009



• Communication with message-passing

– Request / Reply

– No memory sharing

• Asynchronous request services

– Request queue

– Rendezvous

– Future with wait-by-necessity

• Confluence and determinacy

– Causal ordering

– Activity state characterization

• Java implementation

Asynchronous Sequential Process

5

1            2

1 2 P1

P2

3

RDV

Denis Caromel and Ludovic Henrio and Bernard Serpette

Asynchronous and Deterministic Objects, POPL!04

Thursday, June 11, 2009



• Communication with message-passing

– Request / Reply

– No memory sharing

• Asynchronous request services

– Request queue

– Rendezvous

– Future with wait-by-necessity

• Confluence and determinacy

– Causal ordering

– Activity state characterization

• Java implementation

Asynchronous Sequential Process

6

1            2

1 2 P1

P2

3

1

Futures and WBN

2 1

Denis Caromel and Ludovic Henrio and Bernard Serpette

Asynchronous and Deterministic Objects, POPL!04

Thursday, June 11, 2009



• Communication with message-passing

– Request / Reply

– No memory sharing

• Asynchronous request services

– Request queue

– Rendezvous

– Future with wait-by-necessity

• Confluence and determinacy

– Causal ordering

– Activity state characterization

• Java implementation

Asynchronous Sequential Process

7

1      2

1 2 3

1     2

3 1 3

3

2

Denis Caromel and Ludovic Henrio and Bernard Serpette

Asynchronous and Deterministic Objects, POPL!04

point-to-point FIFO order causal ordering

Thursday, June 11, 2009



• Communication with message-passing

– Request / Reply

– No memory sharing

• Asynchronous request services

– Request queue

– Rendezvous

– Future with wait-by-necessity

• Confluence and determinacy

– Causal ordering

– Activity state characterization

• Java implementation

Asynchronous Sequential Process

8

1      2

1 2 3

1     2

3 1 3

3

2

Denis Caromel and Ludovic Henrio and Bernard Serpette

Asynchronous and Deterministic Objects, POPL!04

point-to-point FIFO order causal ordering

Thursday, June 11, 2009



• Communication with message-passing

– Request / Reply

– No memory sharing

• Asynchronous request services

– Request queue

– Rendezvous

– Future with wait-by-necessity

• Confluence and determinacy

– Causal ordering

– Activity state characterization

• Java implementation

Asynchronous Sequential Process

9

Denis Caromel and Ludovic Henrio and Bernard Serpette

Asynchronous and Deterministic Objects, POPL!04

http://proactive.inria.fr

Thursday, June 11, 2009

http://proactive.inria.fr
http://proactive.inria.fr


ProActive OO-SPMD

Objectives

• Provide an MPI-like programming model

• Ease the porting an MPI application to ProActive

• Give Object Oriented to SPMD model
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ProActive OO-SPMD

Features

• Asynchronous collective operations
Asynchronous barrier

• Asynchronous group communication
Scattering, gathering

• Take into account topology
Optimized algorithm
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Fault Tolerance with ASP

Objectives

• Transparency
No piece of code dedicated to Fault Tolerance in applications

• Portability
No assumption about underlying hardware

• Consistency
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Fault Tolerance with ASP

Propositions

• Rollback Recovery

• TTC + Communication Induced Checkpointing: Transparency
No programmer intervention

• Constrained Checkpointability: Portability
No Checkpoint during a service
Un-consistency of recovery lines
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Principles of the Protocol

Fault Tolerance with ASP
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Fault Tolerance with ASP

Principles of the Protocol

• Orphan and In-transit Messages

• Promised Requests

• Request Reception History
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Fault Tolerance with ASP

Orphan Messages

16

i

Ci
n+1

j

Q1

Cj[Q0]
n

Q0

Cj[Q1]
n+1

Q1 R1

Q1 is an Orphan Request

Thursday, June 11, 2009



n+1

n+1n

Fault Tolerance with ASP

Promised Request

17

i

Ci
n+1

j

Q1

Cj [Qi,j]
n+1

Qi,j R1Q1

i

j

Q1

Q1 R1Q0

synchronization with the
actual request arrival 

Thursday, June 11, 2009



Fault Tolerance with ASP

In-transit Messages
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Fault Tolerance with ASP

Request Reception History
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Fault Tolerance with ASP

Synthesis

• Orphan Request
Replace with a promised request with wait-by-necessity

• In-transit Requests
Reception of such a request is journalized into a request reception history

• In-transit Reply
Can’t happen: occur after the reception of an orphan request, so a 
checkpoint have been performed
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Benchmarking Fault Tolerance

• NAS Parallel Benchmarks

• 5 kernels : EP, CG, FT, MG, IS

• About 10,000 LOC
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Benchmarking Fault Tolerance
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Benchmarking Fault Tolerance
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Thank you for your attention
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