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Presentation Outline

• What is object based decomposition

– Its embodiment in Charm++ and AMPI

– Its general benefits

– Its features that are useful for fault tolerance schemes

• Our Fault Tolerance work in Charm++ and AMPI

– Disk-based checkpoint/restart

– In-memory double checkpoint/restart

– Proactive object-migration

– Message-logging

• Appeal for research in leveraging these features in 

FT research
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Object based over-decomposition

• Objects:

– Locality of data references is a critical attribute for performance 

– A parallel object can access only its own data

– Asynchronous method invocation for accessing other’s data

• Over-Decompostion

– the programmer decompose computation into objects

• Work units, data-units, composites

– Let an intelligent runtime system assign objects to processors

– RTS can change this assignment (mapping) during execution
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Object-based over-decomposition: Charm++
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User View

System implementation

• Multiple “indexed collections” of C++ objects

• Indices can be multi-dimensional and/or sparse

• Programmer expresses communication between objects

– with no reference to processors



Object-based over-decomposition: AMPI

• Each MPI process is implemented as a user-level thread

• Threads are light-weight, and migratable!
– <1 microsecond contex tswitch time, potentially >100k threads per core

• Each thread is embedded in a charm+ object (chare)
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Real Processors

MPI 
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Virtual 

Processors 
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migratable 

threads)



Some Relevant Properties of this approach:

Message Driven Execution
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Scheduler Scheduler

Message Q Message Q

Object-based Virtualization leads to Message Driven Execution
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Charm++/AMPI are well established systems

• The Charm++ model has succeeded in 

CSE/HPC

• Because:

– Resource management, …

15% of cycles at NCSA, 

20% at PSC, were used on 

Charm++ apps, in a one 

year period

• So, work on fault tolerance for Charm++ and AMPI is 

directly useful to real apps
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Fault Tolerance in Charm++ & AMPI

• Four Approaches Available:

a) Disk-based checkpoint/restart

b) In-memory double checkpoint/restart

c) Proactive object migration

d) Message-logging

• Common Features:

– Based on dynamic runtime capabilities

– Use of object-migration

– Can be used in concert with load-balancing schemes
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Disk-Based Checkpoint/Restart

• Basic Idea:

– Similar to traditional checkpoint/restart; “migration” to disk

• Implementation in Charm++/AMPI:
– Blocking coordinated checkpoint: MPI_Checkpoint(DIRNAME)

• Pros:

– Simple scheme, effective for common cases

– Virtualization enables restart with any number of processors

• Cons:

– Checkpointing and data reload operations may be slow

– Work between last checkpoint and failure is lost

– Job needs to be resubmitted and restarted
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In-Memory Double Checkpoint/Restart

• Basic Idea:

– Avoid overhead of disk access for keeping saved data

– Allow user to define what makes up the state data

• Implementation in Charm++/AMPI:

– Coordinated checkpoint

– Each object maintains two checkpoints:

• on local processor’s memory

• on remote buddy processor’s memory

– A dummy process is created to replace crashed process

– New process starts recovery on other processors

• use buddy’s checkpoint to recreate state of  failing processor

• perform load balance after restart
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In-Memory Double Checkpoint/Restart (cont.)

• Evaluation of Checkpointing Overhead:

– 3D-Jacobi code in AMPI, 200 MB data, IA-32 cluster

– Execution of 100 iterations, 8 checkpoints taken
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In-Memory Double Checkpoint/Restart (cont.)

• Comparison to disk-based checkpointing:
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In-Memory Double Checkpoint/Restart (cont.)

• Recovery Performance:

– Molecular Dynamics LeanMD code, 92K atoms, P=128

– Load Balancing (LB) effect after failure:
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In-Memory Double Checkpoint/Restart (cont.)

• Application Performance:

– Molecular Dynamics LeanMD code, 92K atoms, P=128

– Checkpointing every 10 timesteps; 10 crashes inserted:
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In-Memory Double Checkpoint/Restart (cont.)

• Pros:

– Faster checkpointing than disk-based

– Reading of saved data also faster

– Only one processor fetches checkpoint across network

• Cons:

– Memory overhead may be high

– All processors are rolled back, despite individual failure 

– All the work since last checkpoint is redone by every processor 

• Publications:

– Zheng, Huang & Kale: ACM-SIGOPS, April 2006

– Zheng, Shi & Kale: IEEE-Cluster’2004, Sep.2004
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Proactive Object Migration

• Basic Idea:

– Use knowledge about impending faults

– Migrate objects away from processors  that may fail soon

– Fall back to checkpoint/restart when faults not predicted

• Implementation in Charm++/AMPI:

– Each object has a unique index

– Each object is mapped to a home processor

• objects need not reside on home processor

• home processor knows how to reach the object

– Upon  getting a warning, evacuate the processor

• reassign mapping of objects to new home processors

• send objects away, to their home processors
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Proactive Object Migration (cont.)

• Evacuation time as a function of data size:

– 5-point stencil code  in Charm++, IA-32 cluster
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Proactive Object Migration (cont.)

• Evacuation time as a function of  #processors:

– 5-point stencil code  in Charm++, IA-32 cluster
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Proactive Object Migration (cont.)

• Performance of an MPI application

– Sweep3d  code, 150x150x150 dataset,  P=32, 1 warning

– 5-point stencil code  in Charm++, IA-32 cluster

6/16/2009 INRIA_NCSA JointLab



Proactive Object Migration (cont.)

• Pros:

– No overhead in fault-free scenario

– Evacuation time scales well, only depends on data and network

– No need to roll back when predicted fault happens

• Cons:

– Effectiveness depends on fault predictability mechanism

– Some faults may happen without advance warning

• Publications:

– Chakravorty, Mendes & Kale: HiPC, Dec.2006

– Chakravorty, Mendes, Kale et al: ACM-SIGOPS, April 2006
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Message-Logging

• Basic Idea:

– Messages are stored by sender during execution

– Periodic checkpoints still maintained

– After a crash, reprocess “recent” messages to regain state

• Implementation in Charm++/AMPI:

– Since the state depends on the order of messages received, the 

protocol ensures that the new receptions occur in the same order

– Upon failure, roll back is “localized” around failing point: no 

need to roll back all the processors!

– With virtualization, work in one processor is divided across 

multiple virtual processors; thus, restart can be parallelized

– Virtualization helps fault-free case as well
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Message-Logging (cont.)

• Fast restart performance:

– Test: 7-point 3D-stencil in MPI, P=32, 2 ≤ VP ≤ 16

– Checkpoint taken every 30s, failure inserted at t=27s
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Our Checkpoint-

Resart method

(Message logging 

+ Object-based 

virtualization)

Progress is faster 

with failures

Power 

consumption is 

lower during 

recovery6/16/2009 INRIA_NCSA JointLab



Message-Logging (cont.)

• Fault-free performance:

– Test: NAS benchmarks, MG/LU

– Versions:  AMPI,  AMPI+FT,  AMPI+FT+multipleVPs
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Message-Logging (cont.)

• Protocol Optimization:

– Combine protocol messages: reduces overhead and contention

– Test: synthetic compute/communicate benchmark
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Message-Logging (cont.)

• Pros:

– No need to roll back non-failing processors

– Restart can be accelerated by spreading work to be redone

– No need of stable storage

• Cons:

– Protocol overhead  is present even in fault-free scenario

– Increase in latency may be an issue for fine-grained applications

• Publications:

– Chakravorty: UIUC PhD Thesis,  Dec.2007

– Chakravorty & Kale: IPDPS, April 2007

– Chakravorty & Kale: FTPDS workshop at IPDPS, April 2004
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Current PPL Research Directions

• Message-Logging Scheme

– Decrease latency overhead in protocol

– Decrease memory overhead for checkpoints

– Stronger coupling to load-balancing

– Newer schemes to reduce message-logging overhead
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But we are not experts in FT

• The message-driven objects model provides many 

benefits for fault tolerance schemes

– Not just our schemes, but your schemes too

– Multiple objects per processor: 

• latencies of protocols can be hidden

– Parallel recovery by leveraging “multiple objects per processor”

– Can combine benefits by using system level or BLCR schemes 

specialized to take advantage of objects (or user-level threads)

– I am sure you can think of many new schemes

• We are willing to help 
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Messages

• We have interesting fault tolerance schemes

– Read about them

• We have an approach to parallel programming

– That has benefits in the era of complex machines, and 

sophisticated applications

– That is used by real apps

– That provides beneficial features for FT schemes

– That is available via the web

– SO: please think about developing new FT schemes of your 

own for this model

• More info, papers, software: http://charm.cs.uiuc.edu

• And please pass the word on: we are hiring
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