Scalable Fault Tolerance Schemes using
Adaptive Runtime Support

Laxmikant (Sanjay) Kale

http://charm.cs.uiuc.edu

Parallel Programming Laboratory
Department of Computer Science
University of Illinois at Urbana Champaign

L LLINOTIS PARALLEL[TD

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PROGRAMM 'NG "AB UI0C
DEPT.OF COMPUTER SCIENCE UNIVERSITY OF ILLINOIS

Presentation Outline

» \What Is object based decomposition

— Its embodiment in Charm++ and AMPI
— Its general benefits
— Its features that are useful for fault tolerance schemes

» Our Fault Tolerance work in Charm++ and AMPI
— Disk-based checkpoint/restart
— In-memory double checkpoint/restart
— Proactive object-migration
— Message-logging

» Appeal for research in leveraging these features in
FT research

6/16/2009 INRIA_NCSA JointLab 2

Object based over-decomposition
* ODbjects:

— Locality of data references is a critical attribute for performance
— A parallel object can access only its own data
— Asynchronous method invocation for accessing other’s data

» Over-Decompostion
— the programmer decompose computation into objects
« Work units, data-units, composites
— Let an intelligent runtime system assign objects to processors
— RTS can change this assignment (mapping) during execution

Object-based over-decomposition: Charm++

* Multiple “indexed collections” of C++ objects

e Indices can be multi-dimensional and/or sparse

« Programmer expresses communication between objects
— with no reference to processors

System implementation

I

User View

Object-based over-decomposition: AMPI

« Each MPI process Is implemented as a user-level thread

» Threads are light-weight, and migratable!
— <1 microsecond contex tswitch time, potentially >100k threads per core

« Each thread is embedded in a charm+ object (chare)

Virtual
Processors
(user-level
migratable

J threads)

Real Processors

Some Relevant Properties of this approach:
Message Driven Execution

Object-based Virtualization leads to Message Driven Execution

Charm++/AMPI are well established systems

 The Charm++ model has succeeded In

CSE/HPC 15% of cycles at NCSA,
0
e Because: 20% at PSC, were used on

Charm++ apps, in a one
— Resource management, ... year period

* So, work on fault tolerance for Charm++ and AMPI is
directly useful to real apps

Fault Tolerance in Charm++ & AMPI

* Four Approaches Available:
a) Disk-based checkpoint/restart
b) In-memory double checkpoint/restart
c) Proactive object migration
d) Message-logging

e Common Features:

— Based on dynamic runtime capabilities
— Use of object-migration
— Can be used in concert with load-balancing schemes

6/16/2009 INRIA_NCSA JointLab

Disk-Based Checkpoint/Restart
Basic ldea:

— Similar to traditional checkpoint/restart; “migration” to disk

Implementation in Charm++/AMPI.
— Blocking coordinated checkpoint: MPI Checkpoint (DIRNAME)

Pros:

— Simple scheme, effective for common cases
— Virtualization enables restart with any number of processors

cons:

— Checkpointing and data reload operations may be slow
— Work between last checkpoint and failure is lost
— Job needs to be resubmitted and restarted

6/16/2009 INRIA_NCSA JointLab

In-Memory Double Checkpoint/Restart

e Basic ldea:

— Avoid overhead of disk access for keeping saved data
— Allow user to define what makes up the state data

« Implementation in Charm++/AMPI:

— Coordinated checkpoint
— Each object maintains two checkpoints:
* on local processor’s memory
0N remote buddy processor’s memory
— A dummy process Is created to replace crashed process
— New process starts recovery on other processors
* use buddy’s checkpoint to recreate state of failing processor
 perform load balance after restart

6/16/2009 INRIA_NCSA JointLab

In-Memory Double Checkpoint/Restart (cont.)

 Evaluation of Checkpointing Overhead:

— 3D-Jacobi code in AMPI, 200 MB data, 1A-32 cluster
— Execution of 100 iterations, 8 checkpoints taken

Total execution tine

250

200

150

(s)

100

[$2]
o

o

100Mbi t

O Normal Char m++/ AVPI

4

BFT- Charm+ Wo checkpointing [
O FT- Charmr+ wi th checkpoi nti ng

—

ﬂﬂmmm_

8 16 32 64
Nunber of processors

128

Total execution tine

(s)

250

200

150

100

[S2)]
o

o

Mri net

O Nornal Char m++ AVPI

4

BT harm++ Wo checkpoi nti ng
O FT- Charm+ wi th checkpoi nti ng

‘I|‘I 0] o

8 16 32 64 128

Nunber of processors

6/16/2009

INRIA_NCSA JointLab

11

In-Memory Double Checkpoint/Restart (cont.)
« Comparison to disk-based checkpointing:

1000

100
//T —*—doubl e i n-menory
" ._.__‘__0/‘/ (Mrinet)
doubl e i n-nenory
- (100Mb)

Checkpoi nt over head (s)

Local D sk
0. 1 >
/./'/ —*— doubl e i n-di sk
0. 01 (Mrinet)
+ —8— \FS di sk

0. 001
6.4 12.8 25.6 51.2 102 205 410 819 1638 3277 6554

Probl em si ze (MB)

6/16/2009 INRIA_NCSA JointLab

In-Memory Double Checkpoint/Restart (cont.)

» Recovery Performance:
— Molecular Dynamics LeanMD code, 92K atoms, P=128
— Load Balancing (LB) effect after failure:

Wthout LB Wth LB
3 4 3 4
e . e |
:33 :33
882‘k AP i A P L § %2
R, s 55, | i S oy
g g
m 0 m 0 1 1 1 1 1 1
1 101 201 301 401 501 601 1 101 201 301 401 501 601
Ti mest ep Ti mest ep

6/16/2009 INRIA_NCSA JointLab

In-Memory Double Checkpoint/Restart (cont.)

» Application Performance:

— Molecular Dynamics LeanMD code, 92K atoms, P=128
— Checkpointing every 10 timesteps; 10 crashes inserted:

load balancing

L e WMW

i T T T T T T
0 100 200 00 400 B B0

Tinestep

6/16/2009 INRIA_NCSA JointLab

In-Memory Double Checkpoint/Restart (cont.)

* Pros:
— Faster checkpointing than disk-based
— Reading of saved data also faster
— Only one processor fetches checkpoint across network

e Cons:

— Memory overhead may be high
— All processors are rolled back, despite individual failure
— All the work since last checkpoint is redone by every processor

 Publications:
— Zheng, Huang & Kale: ACM-SIGOPS, April 2006
— Zheng, Shi & Kale: IEEE-Cluster’2004, Sep.2004

6/16/2009 INRIA_NCSA JointLab

Proactive Object Migration

 Basic ldea:
— Use knowledge about impending faults
— Migrate objects away from processors that may fail soon
— Fall back to checkpoint/restart when faults not predicted

« Implementation in Charm++/AMPI:

— Each object has a unique index
— Each object is mapped to a home processor
* objects need not reside on home processor
» home processor knows how to reach the object
— Upon getting a warning, evacuate the processor
* reassign mapping of objects to new home processors
» send objects away, to their home processors

6/16/2009 INRIA_NCSA JointLab

1

Proactive Object Migration (cont.)

e Evacuation time as a function of data size:
— 5-point stencil code in Charm++, 1A-32 cluster

L Be+B
.Be-a1
.he-g1
.ce—@1
.ce—-ge
.le—@E_
.be-@¢e
.Be-03

. Fe-03

6/16/2009

pProcs
procs
procs

o
o
o

gigabit
myrinet
gigabit
myrinet

3c

=X

128
Total User Data (ME?2

INRIA_NCSA JointLab

cob

512

Proactive Object Migration (cont.)

 Evacuation time as a function of #processors:
— 5-point stencil code in Charm++, 1A-32 cluster

2. e+l | | | |
512 MB with gigabit —e—
1.0e+00 - 512 ME LdJ:.'th mt?JPimgt —— |

32 MB with gigabit —8—

32 MB with myrinet —¢—
o.Pe-01 _
c.oe-d1 _
1.2e-81 _
&.2e-Ud2 _
2.1le-02 _
1.6e—-0B2 _
7 .B8e-U3 _
=2.9e-63 l l | | l |

D 10 20 20 40 50 o .

Number of processors

6/16/2009 INRIA_NCSA JointLab

Proactive Object Migration (cont.)

Performance of an MPI application
— Sweep3d code, 150x150x150 dataset, P=32, 1 warning

I I I I I
Evacuation without load balance
Evacuation with load balance

o LWarning

Karning Load balancing

Time per Iteration (s
=
oy

5] o 19 15 2y 25 34 35 46 45 =17

Iteration Mumber

6/16/2009 INRIA_NCSA JointLab

Proactive Object Migration (cont.)

 Pros:

— No overhead in fault-free scenario
— Evacuation time scales well, only depends on data and network
— No need to roll back when predicted fault happens

e Cons:

— Effectiveness depends on fault predictability mechanism
— Some faults may happen without advance warning

e Publications:

— Chakravorty, Mendes & Kale: HIPC, Dec.2006
— Chakravorty, Mendes, Kale et al: ACM-SIGOPS, April 2006

6/16/2009 INRIA_NCSA JointLab

Message-Logging

 Basic ldea:
— Messages are stored by sender during execution
— Periodic checkpoints still maintained

— After a crash, reprocess “recent” messages to regain state

« Implementation in Charm++/AMPI:

— Since the state depends on the order of messages received, the
protocol ensures that the new receptions occur in the same order

— Upon failure, roll back is “localized” around failing point: no
need to roll back all the processors!

— With virtualization, work in one processor is divided across
multiple virtual processors; thus, restart can be parallelized

— Virtualization helps fault-free case as well

6/16/2009 INRIA_NCSA JointLab

Message-Logging (cont.)

o Fast restart performance:
— Test: 7-point 3D-stencil in MPI, P=32, 2 < VP <16
— Checkpoint taken every 30s, failure inserted at t=27s

6/16/2009

275 -
o5 | R Lite
1 [l Redistribute the objects
29 5 | B Recreate the objects
[l Retrieve the checkpoint
20 B Launching the new
pocess
17.5
@ 15
b
E |
= 125
104
7.5
e
2.5 -
ﬂ T T T

Basic

Fast-2

Fast-4

Fast-8 Fast-16

INRIA_NCSA JointLab

22

19MO0d

6/16/2009

INRIA_NCSA JointLab

Normal
Checkpoint-Resart
method

Progress is slowed
down with failures

Power
consumption is
continuous

6/16/2009 INRIA_NCSA JointLab

Message-Logging (cont.)

Fault-free performance:

— Test: NAS benchmarks, MG/LU
— Versions: AMPI, AMPI+FT, AMPI+FT+multipleVPs

4000 10000

3500 MGclass B o Ll class B

3000
2 2500 & 6000
= 2000 =
= eno = 4000

1000 2000

500 -

0+ 0
2 4 B8 18 32 2 4 8 16 32
Proceszors Processors

6/16/2009 INRIA_NCSA JointLab 25

Message-Logging (cont.)

 Protocol Optimization:

— Combine protocol messages: reduces overhead and contention
— Test: synthetic compute/communicate benchmark

100

10

@ AMPI
* AMPI-FT-1vp
¥ AMPI-FT dvp

& AMPI-FT vpd
with combining

Avg. Time per iteration (ms)

D-I T T T 1
A 1 10 100

Work per iteration per processor (ms)

6/16/2009 INRIA_NCSA JointLab 26

Message-Logging (cont.)

 Pros:

— No need to roll back non-failing processors
— Restart can be accelerated by spreading work to be redone
— No need of stable storage

e Cons:

— Protocol overhead is present even in fault-free scenario
— Increase in latency may be an issue for fine-grained applications

e Publications:

— Chakravorty: UIUC PhD Thesis, Dec.2007
— Chakravorty & Kale: IPDPS, April 2007
— Chakravorty & Kale: FTPDS workshop at IPDPS, April 2004

6/16/2009 INRIA_NCSA JointLab

Current PPL Research Directions
» Message-Logging Scheme

— Decrease latency overhead in protocol

— Decrease memory overhead for checkpoints

— Stronger coupling to load-balancing

— Newer schemes to reduce message-logging overhead

6/16/2009 INRIA_NCSA JointLab

But we are not experts in FT

» The message-driven objects model provides many

benefits for fault tolerance schemes
— Not just our schemes, but your schemes too
— Multiple objects per processor:
» |atencies of protocols can be hidden
— Parallel recovery by leveraging “multiple objects per processor”

— Can combine benefits by using system level or BLCR schemes
specialized to take advantage of objects (or user-level threads)

— | 'am sure you can think of many new schemes

» \We are willing to help

Messages

» \We have Interesting fault tolerance schemes
— Read about them

» \We have an approach to parallel programming

— That has benefits in the era of complex machines, and
sophisticated applications

— That i1s used by real apps
— That provides beneficial features for FT schemes
— That is available via the web

— SO: please think about developing new FT schemes of your
own for this model

* More Info, papers, software:
« And please pass the word on: we are hiring

http://charm.cs.uiuc.edu/

PPL Funding Sources

National Science Foundation

— BigSim, Cosmology, Languages

Dep. of Energy

— Charm++ (Load-Balance, Fault-Tolerance), Quantum Chemistry

National Institutes of Health
— NAMD

NCSA/NSF, NCSA/IACAT
— Blue Waters project (Charm++, BigSim, NAMD), Applications

Dep. of Energy / UIUC Rocket Center
— AMPI, Applications

NASA
— Cosmology/Visualization

6/16/2009 INRIA_NCSA JointLab

