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Presentation Outline

» \What Is object based decomposition

— Its embodiment in Charm++ and AMPI
— Its general benefits
— Its features that are useful for fault tolerance schemes

» Our Fault Tolerance work in Charm++ and AMPI
— Disk-based checkpoint/restart
— In-memory double checkpoint/restart
— Proactive object-migration
— Message-logging

» Appeal for research in leveraging these features in
FT research

6/16/2009 INRIA_NCSA JointLab 2



Object based over-decomposition
* ODbjects:

— Locality of data references is a critical attribute for performance
— A parallel object can access only its own data
— Asynchronous method invocation for accessing other’s data

» Over-Decompostion
— the programmer decompose computation into objects
« Work units, data-units, composites
— Let an intelligent runtime system assign objects to processors
— RTS can change this assignment (mapping) during execution



Object-based over-decomposition: Charm++

* Multiple “indexed collections” of C++ objects

e Indices can be multi-dimensional and/or sparse

« Programmer expresses communication between objects
— with no reference to processors

System implementation

I

User View




Object-based over-decomposition: AMPI

« Each MPI process Is implemented as a user-level thread

» Threads are light-weight, and migratable!
— <1 microsecond contex tswitch time, potentially >100k threads per core

« Each thread is embedded in a charm+ object (chare)

Virtual
Processors
(user-level
migratable

J threads)

Real Processors




Some Relevant Properties of this approach:
Message Driven Execution

Object-based Virtualization leads to Message Driven Execution




Charm++/AMPI are well established systems

 The Charm++ model has succeeded In

CSE/HPC 15% of cycles at NCSA,
0
e Because: 20% at PSC, were used on

Charm++ apps, in a one
— Resource management, ... year period

* So, work on fault tolerance for Charm++ and AMPI is
directly useful to real apps




Fault Tolerance in Charm++ & AMPI

* Four Approaches Available:
a) Disk-based checkpoint/restart
b) In-memory double checkpoint/restart
c) Proactive object migration
d) Message-logging

e Common Features:

— Based on dynamic runtime capabilities
— Use of object-migration
— Can be used in concert with load-balancing schemes
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Disk-Based Checkpoint/Restart
Basic ldea:

— Similar to traditional checkpoint/restart; “migration” to disk

Implementation in Charm++/AMPI.
— Blocking coordinated checkpoint: MPI Checkpoint (DIRNAME)

Pros:

— Simple scheme, effective for common cases
— Virtualization enables restart with any number of processors

cons:

— Checkpointing and data reload operations may be slow
— Work between last checkpoint and failure is lost
— Job needs to be resubmitted and restarted
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In-Memory Double Checkpoint/Restart

e Basic ldea:

— Avoid overhead of disk access for keeping saved data
— Allow user to define what makes up the state data

« Implementation in Charm++/AMPI:

— Coordinated checkpoint
— Each object maintains two checkpoints:
* on local processor’s memory
0N remote buddy processor’s memory
— A dummy process Is created to replace crashed process
— New process starts recovery on other processors
* use buddy’s checkpoint to recreate state of failing processor
 perform load balance after restart
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In-Memory Double Checkpoint/Restart (cont.)

 Evaluation of Checkpointing Overhead:

— 3D-Jacobi code in AMPI, 200 MB data, 1A-32 cluster
— Execution of 100 iterations, 8 checkpoints taken
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In-Memory Double Checkpoint/Restart (cont.)
« Comparison to disk-based checkpointing:
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In-Memory Double Checkpoint/Restart (cont.)

» Recovery Performance:
— Molecular Dynamics LeanMD code, 92K atoms, P=128
— Load Balancing (LB) effect after failure:
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In-Memory Double Checkpoint/Restart (cont.)

» Application Performance:

— Molecular Dynamics LeanMD code, 92K atoms, P=128
— Checkpointing every 10 timesteps; 10 crashes inserted:

load balancing
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In-Memory Double Checkpoint/Restart (cont.)

* Pros:
— Faster checkpointing than disk-based
— Reading of saved data also faster
— Only one processor fetches checkpoint across network

e Cons:

— Memory overhead may be high
— All processors are rolled back, despite individual failure
— All the work since last checkpoint is redone by every processor

 Publications:
— Zheng, Huang & Kale: ACM-SIGOPS, April 2006
— Zheng, Shi & Kale: IEEE-Cluster’2004, Sep.2004
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Proactive Object Migration

 Basic ldea:
— Use knowledge about impending faults
— Migrate objects away from processors that may fail soon
— Fall back to checkpoint/restart when faults not predicted

« Implementation in Charm++/AMPI:

— Each object has a unique index
— Each object is mapped to a home processor
* objects need not reside on home processor
» home processor knows how to reach the object
— Upon getting a warning, evacuate the processor
* reassign mapping of objects to new home processors
» send objects away, to their home processors
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Proactive Object Migration (cont.)

e Evacuation time as a function of data size:
— 5-point stencil code in Charm++, 1A-32 cluster
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Proactive Object Migration (cont.)

 Evacuation time as a function of #processors:
— 5-point stencil code in Charm++, 1A-32 cluster
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Proactive Object Migration (cont.)

Performance of an MPI application
— Sweep3d code, 150x150x150 dataset, P=32, 1 warning
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Proactive Object Migration (cont.)

 Pros:

— No overhead in fault-free scenario
— Evacuation time scales well, only depends on data and network
— No need to roll back when predicted fault happens

e Cons:

— Effectiveness depends on fault predictability mechanism
— Some faults may happen without advance warning

e Publications:

— Chakravorty, Mendes & Kale: HIPC, Dec.2006
— Chakravorty, Mendes, Kale et al: ACM-SIGOPS, April 2006
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Message-Logging

 Basic ldea:
— Messages are stored by sender during execution
— Periodic checkpoints still maintained

— After a crash, reprocess “recent” messages to regain state

« Implementation in Charm++/AMPI:

— Since the state depends on the order of messages received, the
protocol ensures that the new receptions occur in the same order

— Upon failure, roll back is “localized” around failing point: no
need to roll back all the processors!

— With virtualization, work in one processor is divided across
multiple virtual processors; thus, restart can be parallelized

— Virtualization helps fault-free case as well
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Message-Logging (cont.)

o Fast restart performance:
— Test: 7-point 3D-stencil in MPI, P=32, 2 < VP <16
— Checkpoint taken every 30s, failure inserted at t=27s
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Message-Logging (cont.)

Fault-free performance:

— Test: NAS benchmarks, MG/LU
— Versions: AMPI, AMPI+FT, AMPI+FT+multipleVPs
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Message-Logging (cont.)

 Protocol Optimization:

— Combine protocol messages: reduces overhead and contention
— Test: synthetic compute/communicate benchmark

100

10

@ AMPI
* AMPI-FT-1vp
¥ AMPI-FT dvp

& AMPI-FT vpd
with combining

Avg. Time per iteration (ms)

D-I T T T 1
A 1 10 100

Work per iteration per processor (ms)

6/16/2009 INRIA_NCSA JointLab 26



Message-Logging (cont.)

 Pros:

— No need to roll back non-failing processors
— Restart can be accelerated by spreading work to be redone
— No need of stable storage

e Cons:

— Protocol overhead is present even in fault-free scenario
— Increase in latency may be an issue for fine-grained applications

e Publications:

— Chakravorty: UIUC PhD Thesis, Dec.2007
— Chakravorty & Kale: IPDPS, April 2007
— Chakravorty & Kale: FTPDS workshop at IPDPS, April 2004
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Current PPL Research Directions
» Message-Logging Scheme

— Decrease latency overhead in protocol

— Decrease memory overhead for checkpoints

— Stronger coupling to load-balancing

— Newer schemes to reduce message-logging overhead
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But we are not experts in FT

» The message-driven objects model provides many

benefits for fault tolerance schemes
— Not just our schemes, but your schemes too
— Multiple objects per processor:
» |atencies of protocols can be hidden
— Parallel recovery by leveraging “multiple objects per processor”

— Can combine benefits by using system level or BLCR schemes
specialized to take advantage of objects (or user-level threads)

— | 'am sure you can think of many new schemes

» \We are willing to help



Messages

» \We have Interesting fault tolerance schemes
— Read about them

» \We have an approach to parallel programming

— That has benefits in the era of complex machines, and
sophisticated applications

— That i1s used by real apps
— That provides beneficial features for FT schemes
— That is available via the web

— SO: please think about developing new FT schemes of your
own for this model

* More Info, papers, software:
« And please pass the word on: we are hiring


http://charm.cs.uiuc.edu/
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