
Scalable Fault Tolerance Schemes using

Adaptive Runtime Support

Laxmikant (Sanjay) Kale
http://charm.cs.uiuc.edu

Parallel Programming Laboratory

Department of Computer Science

University of Illinois at Urbana Champaign

Presentation Outline

• What is object based decomposition

– Its embodiment in Charm++ and AMPI

– Its general benefits

– Its features that are useful for fault tolerance schemes

• Our Fault Tolerance work in Charm++ and AMPI

– Disk-based checkpoint/restart

– In-memory double checkpoint/restart

– Proactive object-migration

– Message-logging

• Appeal for research in leveraging these features in

FT research

6/16/2009 26/16/2009 INRIA_NCSA JointLab

Object based over-decomposition

• Objects:

– Locality of data references is a critical attribute for performance

– A parallel object can access only its own data

– Asynchronous method invocation for accessing other’s data

• Over-Decompostion

– the programmer decompose computation into objects

• Work units, data-units, composites

– Let an intelligent runtime system assign objects to processors

– RTS can change this assignment (mapping) during execution

6/16/2009 INRIA_NCSA JointLab

Object-based over-decomposition: Charm++

6/16/2009 INRIA_NCSA JointLab

User View

System implementation

• Multiple “indexed collections” of C++ objects

• Indices can be multi-dimensional and/or sparse

• Programmer expresses communication between objects

– with no reference to processors

Object-based over-decomposition: AMPI

• Each MPI process is implemented as a user-level thread

• Threads are light-weight, and migratable!
– <1 microsecond contex tswitch time, potentially >100k threads per core

• Each thread is embedded in a charm+ object (chare)

6/16/2009 INRIA_NCSA JointLab

Real Processors

MPI

processes

Virtual

Processors

(user-level

migratable

threads)

Some Relevant Properties of this approach:

Message Driven Execution

INRIA_NCSA JointLab

Scheduler Scheduler

Message Q Message Q

Object-based Virtualization leads to Message Driven Execution

6/16/2009

Charm++/AMPI are well established systems

• The Charm++ model has succeeded in

CSE/HPC

• Because:

– Resource management, …

15% of cycles at NCSA,

20% at PSC, were used on

Charm++ apps, in a one

year period

• So, work on fault tolerance for Charm++ and AMPI is

directly useful to real apps

INRIA_NCSA JointLab6/16/2009

Fault Tolerance in Charm++ & AMPI

• Four Approaches Available:

a) Disk-based checkpoint/restart

b) In-memory double checkpoint/restart

c) Proactive object migration

d) Message-logging

• Common Features:

– Based on dynamic runtime capabilities

– Use of object-migration

– Can be used in concert with load-balancing schemes

6/16/2009 INRIA_NCSA JointLab

Disk-Based Checkpoint/Restart

• Basic Idea:

– Similar to traditional checkpoint/restart; “migration” to disk

• Implementation in Charm++/AMPI:
– Blocking coordinated checkpoint: MPI_Checkpoint(DIRNAME)

• Pros:

– Simple scheme, effective for common cases

– Virtualization enables restart with any number of processors

• Cons:

– Checkpointing and data reload operations may be slow

– Work between last checkpoint and failure is lost

– Job needs to be resubmitted and restarted

6/16/2009 INRIA_NCSA JointLab

In-Memory Double Checkpoint/Restart

• Basic Idea:

– Avoid overhead of disk access for keeping saved data

– Allow user to define what makes up the state data

• Implementation in Charm++/AMPI:

– Coordinated checkpoint

– Each object maintains two checkpoints:

• on local processor’s memory

• on remote buddy processor’s memory

– A dummy process is created to replace crashed process

– New process starts recovery on other processors

• use buddy’s checkpoint to recreate state of failing processor

• perform load balance after restart

6/16/2009 INRIA_NCSA JointLab

In-Memory Double Checkpoint/Restart (cont.)

• Evaluation of Checkpointing Overhead:

– 3D-Jacobi code in AMPI, 200 MB data, IA-32 cluster

– Execution of 100 iterations, 8 checkpoints taken

100Mbi t

0

50

100

150

200

250

4 8 16 32 64 128

Number of pr ocessor s

T
o
t
a
l

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

Nor mal Char m++/ AMPI

FT- Char m++ w/ o checkpoi nt i ng

FT- Char m++ wi t h checkpoi nt i ng

Myr i net

0

50

100

150

200

250

4 8 16 32 64 128

Number of pr ocessor s

T
o
t
a
l

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

Nor mal Char m++/ AMPI

FT- Char m++ w/ o checkpoi nt i ng

FT- Char m++ wi t h checkpoi nt i ng

6/16/2009 INRIA_NCSA JointLab 11

In-Memory Double Checkpoint/Restart (cont.)

• Comparison to disk-based checkpointing:

0. 001

0. 01

0. 1

1

10

100

1000

6. 4 12. 8 25. 6 51. 2 102 205 410 819 1638 3277 6554

Pr obl em s i ze (MB)

C
h

e
c

k
p

o
i

n
t

o

v
e

r
h

e
a

d

(
s

)

doubl e i n- memor y

(Myr i net)

doubl e i n- memor y

(100Mb)

Local Di sk

doubl e i n- di sk

(Myr i net)

NFS di sk

6/16/2009 INRIA_NCSA JointLab

In-Memory Double Checkpoint/Restart (cont.)

• Recovery Performance:

– Molecular Dynamics LeanMD code, 92K atoms, P=128

– Load Balancing (LB) effect after failure:

Wi t h LB

0

1

2

3

4

1 101 201 301 401 501 601

Ti mest ep

S
i
m
u
l
a
t
i
o
n

t
i
m
e

p
e
r

s
t
e
p

(
s
)

Wi t hout LB

0

1

2

3

4

1 101 201 301 401 501 601

Ti mest ep

S
i
m
u
l
a
t
i
o
n

t
i
m
e

p
e
r

s
t
e
p

(
s
)

6/16/2009 INRIA_NCSA JointLab

In-Memory Double Checkpoint/Restart (cont.)

• Application Performance:

– Molecular Dynamics LeanMD code, 92K atoms, P=128

– Checkpointing every 10 timesteps; 10 crashes inserted:

6/16/2009 INRIA_NCSA JointLab

In-Memory Double Checkpoint/Restart (cont.)

• Pros:

– Faster checkpointing than disk-based

– Reading of saved data also faster

– Only one processor fetches checkpoint across network

• Cons:

– Memory overhead may be high

– All processors are rolled back, despite individual failure

– All the work since last checkpoint is redone by every processor

• Publications:

– Zheng, Huang & Kale: ACM-SIGOPS, April 2006

– Zheng, Shi & Kale: IEEE-Cluster’2004, Sep.2004

6/16/2009 INRIA_NCSA JointLab

Proactive Object Migration

• Basic Idea:

– Use knowledge about impending faults

– Migrate objects away from processors that may fail soon

– Fall back to checkpoint/restart when faults not predicted

• Implementation in Charm++/AMPI:

– Each object has a unique index

– Each object is mapped to a home processor

• objects need not reside on home processor

• home processor knows how to reach the object

– Upon getting a warning, evacuate the processor

• reassign mapping of objects to new home processors

• send objects away, to their home processors

6/16/2009 INRIA_NCSA JointLab

Proactive Object Migration (cont.)

• Evacuation time as a function of data size:

– 5-point stencil code in Charm++, IA-32 cluster

6/16/2009 INRIA_NCSA JointLab

Proactive Object Migration (cont.)

• Evacuation time as a function of #processors:

– 5-point stencil code in Charm++, IA-32 cluster

6/16/2009 INRIA_NCSA JointLab

Proactive Object Migration (cont.)

• Performance of an MPI application

– Sweep3d code, 150x150x150 dataset, P=32, 1 warning

– 5-point stencil code in Charm++, IA-32 cluster

6/16/2009 INRIA_NCSA JointLab

Proactive Object Migration (cont.)

• Pros:

– No overhead in fault-free scenario

– Evacuation time scales well, only depends on data and network

– No need to roll back when predicted fault happens

• Cons:

– Effectiveness depends on fault predictability mechanism

– Some faults may happen without advance warning

• Publications:

– Chakravorty, Mendes & Kale: HiPC, Dec.2006

– Chakravorty, Mendes, Kale et al: ACM-SIGOPS, April 2006

6/16/2009 INRIA_NCSA JointLab

Message-Logging

• Basic Idea:

– Messages are stored by sender during execution

– Periodic checkpoints still maintained

– After a crash, reprocess “recent” messages to regain state

• Implementation in Charm++/AMPI:

– Since the state depends on the order of messages received, the

protocol ensures that the new receptions occur in the same order

– Upon failure, roll back is “localized” around failing point: no

need to roll back all the processors!

– With virtualization, work in one processor is divided across

multiple virtual processors; thus, restart can be parallelized

– Virtualization helps fault-free case as well

6/16/2009 INRIA_NCSA JointLab

Message-Logging (cont.)

• Fast restart performance:

– Test: 7-point 3D-stencil in MPI, P=32, 2 ≤ VP ≤ 16

– Checkpoint taken every 30s, failure inserted at t=27s

6/16/2009 INRIA_NCSA JointLab 22

Time

P
ro

g
ress

P
o
w

er

Normal

Checkpoint-Resart

method

Progress is slowed

down with failures

Power

consumption is

continuous

6/16/2009 INRIA_NCSA JointLab

Our Checkpoint-

Resart method

(Message logging

+ Object-based

virtualization)

Progress is faster

with failures

Power

consumption is

lower during

recovery6/16/2009 INRIA_NCSA JointLab

Message-Logging (cont.)

• Fault-free performance:

– Test: NAS benchmarks, MG/LU

– Versions: AMPI, AMPI+FT, AMPI+FT+multipleVPs

6/16/2009 INRIA_NCSA JointLab 25

Message-Logging (cont.)

• Protocol Optimization:

– Combine protocol messages: reduces overhead and contention

– Test: synthetic compute/communicate benchmark

6/16/2009 INRIA_NCSA JointLab 26

Message-Logging (cont.)

• Pros:

– No need to roll back non-failing processors

– Restart can be accelerated by spreading work to be redone

– No need of stable storage

• Cons:

– Protocol overhead is present even in fault-free scenario

– Increase in latency may be an issue for fine-grained applications

• Publications:

– Chakravorty: UIUC PhD Thesis, Dec.2007

– Chakravorty & Kale: IPDPS, April 2007

– Chakravorty & Kale: FTPDS workshop at IPDPS, April 2004

6/16/2009 INRIA_NCSA JointLab

Current PPL Research Directions

• Message-Logging Scheme

– Decrease latency overhead in protocol

– Decrease memory overhead for checkpoints

– Stronger coupling to load-balancing

– Newer schemes to reduce message-logging overhead

6/16/2009 INRIA_NCSA JointLab

But we are not experts in FT

• The message-driven objects model provides many

benefits for fault tolerance schemes

– Not just our schemes, but your schemes too

– Multiple objects per processor:

• latencies of protocols can be hidden

– Parallel recovery by leveraging “multiple objects per processor”

– Can combine benefits by using system level or BLCR schemes

specialized to take advantage of objects (or user-level threads)

– I am sure you can think of many new schemes

• We are willing to help

6/16/2009 INRIA_NCSA JointLab

Messages

• We have interesting fault tolerance schemes

– Read about them

• We have an approach to parallel programming

– That has benefits in the era of complex machines, and

sophisticated applications

– That is used by real apps

– That provides beneficial features for FT schemes

– That is available via the web

– SO: please think about developing new FT schemes of your

own for this model

• More info, papers, software: http://charm.cs.uiuc.edu

• And please pass the word on: we are hiring
6/16/2009 INRIA_NCSA JointLab

http://charm.cs.uiuc.edu/

PPL Funding Sources

• National Science Foundation

– BigSim, Cosmology, Languages

• Dep. of Energy

– Charm++ (Load-Balance, Fault-Tolerance), Quantum Chemistry

• National Institutes of Health

– NAMD

• NCSA/NSF, NCSA/IACAT

– Blue Waters project (Charm++, BigSim, NAMD), Applications

• Dep. of Energy / UIUC Rocket Center

– AMPI, Applications

• NASA

– Cosmology/Visualization

6/16/2009 INRIA_NCSA JointLab

