Update from Argonne

Rajeev Thakur
Deputy Director
Mathematics and Computer Science Division
Argonne National Laboratory

November 24, 2014
Welcome

- Welcome to downtown Chicago!
- Special welcome to the new members of JLESC
 - Barcelona Supercomputing Center
- We look forward to Jülich and RIKEN joining the Joint Lab in the near future
Argonne is located 25 miles west of here
Mathematics and Computer Science Division Strategic Areas

Extreme Computing: exploring new approaches to system software, fault tolerance, and innovative programming models for next-generation computers. *(Lead: Pete Beckman)*

Big Data: formulating novel techniques for managing, storing, analyzing, and visualizing the enormous amounts of data produced by leadership-class computers and large experimental facilities. *(Lead: Rob Ross)*

Applied Mathematics: formulating rigorous theory leading to fast algorithms, deployed in software on leading-edge computing platforms. *(Lead: Paul Hovland)*

Applications: working with scientists and engineers to apply our advanced algorithms and tools to applications critical to our society, such as life science, climate change, materials, and energy systems simulations *(Lead: Ray Bair)*

In addition to papers, we develop and release a lot of software.
Some New (Recently Funded) Projects
IDEAS - Interoperable Design of Extreme-Scale Application Software

- Leads: Lois Curfman McInnes (Argonne) and Mike Heroux (Sandia)
- Collaborators: LANL, LBNL, LLNL, ORNL, PNNL, Colorado School of Mines
Decaf: High-Performance Decoupling of Tightly Coupled Flows

- Lead: Tom Peterka (Argonne)
- Collaborators: Franck Cappello (Argonne), Jay Lofstead (Sandia)
- See Tom’s talk this afternoon
COOLr: A New System for Dynamic Thermal-Aware Computing

- **Leads:** Pete Beckman, Kazutomo Yoshii (Argonne)
- **Collaborators:** Seda Ogrenci-Memik, Gokhan Memik (Northwestern)
- Power and thermal modeling of high-performance computing architectures
- Investigation of novel thermal instrumentation techniques
- Development of a thermal-aware OS and runtime system
RAMSES: Robust Analytical Models for Science at Extreme Scales

- Argonne Participants: Ian Foster (lead), Venkat Vishwanath, Sven Leyffer, Todd Munson, Yao Zhang, Vitali Morozov
- Other Collaborators: Gagan Agarwal (Ohio State), Nagi Rao (ORNL), Brian Tierney (LBNL), Don Towsley (UMass)
- End-to-end analytical performance modeling to understand the behavior of science workflows in extreme-scale science environments
- Tools that will allow users to optimize performance metrics for the Globus Online file transfer service

- See Ian’s talk on Wednesday
ProVESA: Program Verification for Extreme-Scale Applications

- Argonne Participants: Paul Hovland (lead), Krishna Narayanan, Stefan Wild
- Collaborators: Steve Siegel (U Delaware), Markus Schordan and Dan Quinlan (LLNL)
- Development of new software verification technologies focused on the numerical and mathematical aspects of scientific software
- Verify correctness by using static analysis techniques based on formal verification, supplemented with dynamic analysis informed by numerical noise estimates
- Facilitate the migration of scientific software from bulk-synchronous execution on homogeneous architectures to nondeterministic, asynchronous execution on complex, hierarchical, and heterogeneous architectures
Scalable Analysis Methods and *In Situ* Infrastructure for Extreme Scale Knowledge Discovery

- Argonne Participants: Venkat Vishwanath, Nicola Ferrier
- Collaborators: LBNL, Kitware Inc., Intelligent Light Inc., Georgia Tech.
- Scaling GLEAN, ADIOS, LibSim, and Catalyst in situ infrastructures to current and upcoming supercomputing systems
- Develop “write-once run-anywhere” abstractions to enable analysis to run portably on the four in situ infrastructures
- Algorithmic R&D for in-situ analysis working directly with diverse extreme scale application science communities
Chameleon: An Experimental Instrument for Computer Science

- Lead: Kate Keahey
- Collaborators: Northwestern, Ohio State, UTSA, TACC
- Funded by NSF at Univ of Chicago
- Experimental testbed for cloud computing research
 - Targeting Big Data, Big Compute, Big Instrument research
 - ~14,500 cores, 5 PB disk, 2 sites (CI and TACC) connected with 100G
 - Also heterogeneous hardware including IB, FPGAs, GPUs, Xeon Phis plus ARM and Atom microservers
- Reconfigurable
 - Bare metal reconfiguration, operated as single instrument over two sites
 - Graduated approach: OpenStack and potentially other cloud software also available for ease of use
- Planned interoperability with GENI, Grid’5000, and other testbeds
- See Kate’s talk this afternoon
See MCS web site for many other projects

- Many other projects in MCS have been covered in previous workshops

- See http://www.mcs.anl.gov/research for further information
Some Visitors/Students/Postdocs currently at MCS (1)

- Guillaume Aupy (ENS Lyon) – working with Franck Cappello
 - Speaking tomorrow morning

- Hadrien Croubois (ENS Lyon) – working with Franck Cappello

- Lokman Rahmani (INRIA Rennes) – working with Tom Peterka/Rob Ross
 - Speaking this afternoon

- Sheng Di (postdoc Grenoble) – postdoc at Argonne working with Franck Cappello
 - Speaking tomorrow afternoon

- Leo Bautista Gomez (Ph.D. Tokyo Tech) – postdoc at Argonne working with Franck Cappello
 - Speaking tomorrow morning

- Swann Perarnau (Ph.D. Grenoble, postdoc RIKEN) – postdoc at Argonne working with Kamil Iskra/Rajeev Thakur
Some Visitors/Students/Postdocs currently at MCS (2)

- Min Si (U of Tokyo) – working with Pavan Balaji
 - Speaking tomorrow afternoon

- Xin Zhao (UIUC) – working with Pavan Balaji
 - Presented at the last workshop in Sophia Antipolis

- Florin Isaila (Faculty at Universidad Carlos III de Madrid) – working with Rob Ross (on a two-year Marie Curie Fellowship)
 - Speaking this afternoon

- Antonio Peña (Ph.D., Jaume I University, Spain) – postdoc at Argonne working with Pavan Balaji
 - Speaking tomorrow morning

- We look forward to hosting visitors from our new partners: BSC, JSC, and RIKEN
Next-Generation CORAL System

- Argonne is currently engaged in the negotiation process on a next-generation supercomputing contract as part of DOE’s CORAL collaboration (Collaboration of Oak Ridge, Argonne and Lawrence Livermore national laboratories).
- An announcement by Argonne is planned soon.