
Deep	Learning	on	OpenPower	using	PowerAI

Chekuri	S.	Choudary	(chekuri.choudary@ibm.com)

Rodrigo	Ceron	(Rodrigo.ceron@ibm.com)

Workshop	at	NCSA,	UIUC

February	28th 2018

Agenda	– AM	Session	(Machine	Learning)
• 8.00	AM	– 8.30	AM	(slides	4-8)

• Welcome
• Overview	of	Machine	Learning	algorithms
• Review	of	IBM	Minsky,	IBM	PowerAI,	and	Nimbix	
• Workshop	Objectives

• 8.30	AM	– 9.30	AM	(slides	9-12)
• Introduction	to	Linear	Regression
• Introduction	to	the	Structure	of	a	Tensorflow	Program
• Hands-on	Exercise	on	Linear	Regression

• Change	Learning	Rate,	Number	of	Epochs,	and	Learning	Algorithm
• 9.30	AM	– 10.30	AM	(slides	13-15)

• Logistic	Regression,	Multinomial	Logistic	Regression/Softmax	Regression
• Lab	– Multinomial	Logistic	Regression	Using	Tensorflow	and	MNIST

• 10.30	AM	– 11.00	AM	
• Break

• 11.00	AM	– 12.00	AM	(slides	16-21)
• Introduction	to	Fully	Connected	Neural	Network	
• Lab	– Fully	Connected	Neural	Net	Using	Tensorflow

Agenda	– PM	Session	(Deep	Learning)

• 12.00	PM	– 1.00	PM
• Lunch

• 1.00	PM	– 2.00	PM	(slides	22-31)
• Introduction	to	Deep	Learning
• Introduction	to	Convolutional	Neural	Networks
• Lab	– ImageNet	Exercise	Using	Caffe
• Lab	– Transfer	Learning	Exercise	Using	Caffe	

• 2.00	PM	– 2.30	PM
• Break

• 2.30	PM	– 3.00	PM	(slides	32	- 36)
• Introduction	to	Recurrent	Neural	Networks
• Lab	– NLP	Exercise	Using	Tensorflow

• 3.30	PM	– 4.00	PM
• NCSA	Review	of	NCSA	Deep	Learning	Environment,	How	to	Access	etc.

Source	JP	Morgan	QDS

Classification	of	Machine	Learning	Techniques

• Shorter training times
• Facilitates distributed deep learning and

large model support in IBM PowerAI

POWER,	NVLink	and	P100	Advantage

6

PowerAI	Platform

Caffe NVCaffe TorchIBMCaffe

ChainerTensorFlow

OpenBLAS

Theano

Deep Learning
Frameworks

Accelerated
Servers and

Infrastructure
for Scaling

Spectrum	Scale:
High-Speed	Parallel	

File	System

Scale	to
Cloud

Cluster	of	NVLink	
Servers

Bazel DIGITSNCCLDistributed	
Frameworks

Supporting
Libraries

Objectives
• Introduce the foundations of deep learning
• Give an overview of state-of-the-art deep learning technologies
• Demonstrate the benefits of leveraging IBM deep learning technology offerings (Minsky and

PowerAI) for research, teaching, and course projects
• Targeted audience include software developers, faculty, research scientists, postdocs,

graduate/undergraduate students across various scientific disciplines

Linear	Regression

Structure	of	a	Tensorflow	Program

Build

Run

Ref:	https://www.tensorflow.org/get_started/get_started

Optimizer	to	minimize	loss

Loss	(true	vs	predicted)

Training	data	and	labels

Setup	libraries

Repeat	training

Initialize	and	start	session	to	run

Define	parameters	to	train

Hidden	layer

Output	prediction	accuracy

Jupyter	Notebooks

Linear	Regression	Exercise	using	Tensorflow
• https://github.com/aymericdamien/TensorFlow-
Examples/blob/master/notebooks/2_BasicModels/linear_regression.ipynb

• Follow-up
• Change	learning	rate	with	[0.001	0.003	0.01	0.03	0.1	0.3	1]
• Change	#	of	epochs	with	[500	1000	1500	2000	2500	3000]
• Change	learning	algorithm	with	

[GradientDescentOptimizer MomentumOptimizer RMSPropOptimizer AdamOptimizer]

Classification	(Logistic	Regression)
Hypothesis:	

Cost	function:	

Gradient	Descent	Algorithm:
X1

X2

X3

q0

q1

q2

Value	
between	
0	and	1

1	+	eq1*x1	+	q2*x2	+	q3*x3	
1

Softmax	Regression	(Multinomial	Logistic	Regression)
X1

X3

X2

+1

Input	
Features

Softmax	
Layer

P(Y=0)	|	X

P(Y=0)	|	X

P(Y=0)	|	X

Multinomial	Logistic	Regression	using	Tensorflow
• https://github.com/aymericdamien/TensorFlow-
Examples/blob/master/notebooks/2_BasicModels/logistic_regression.ipynb

• Stochastic	Gradient	Descent	used	in	previous	exercise
for	epoch	in	1	:	num_epochs:

for	sample	in	1:num_samples
#Run	the	optimizer	for	sample

• Mini	Batch	Gradient	Descent	used	in	current	exercise
Initialize	batch_size
num_batches	=	num_samples/batch_size
for	epoch	in	1:	num_epochs:

for	batch	in	1:num_batches
#Run	the	optimizer	for	batch

• Follow-up
• Change	batch	size	in	[25	50	100	200	400	800]
• Try	with	batch	size	55000,	i.e,	batch	gradient	descent
• Try	with	batch	size	=	1,	i.e,	stochastic	gradient	descent	
• Change	number	of	epochs

• Training set:

• bang on this data all you want

• Test set:

• rarely (weekly), evaluate
progress

• Validation set:

• periodically during training,
check

Artificial	Neural	Networks
Cost	Function:

Hidden	layers

Input	
layer

Output	
layer

Activation	Functions

Forward	Propagation	and	Back	Propagation
Gradient Descent Iteration:
1. Forward Propagation (Calculate the cost using cost function)
2. Backward Propagation (Calculate partial derivatives of cost function w.r.t each parameter)

Option 1: Numerical Derivatives
Change the weight a little, calculate the change in cost function
Computationally intractable

Option 2: Analytical Derivatives
Use Chain rule and compute analytical derivatives
Reasonable turnaround times, 1000s of times cheaper

Chain Rule: Back Propagation:

Andrew	Ng

𝑧[#] = 𝑊[#]𝑥 + 𝑏[#]

𝑥

	𝑊[#]

𝑏[#]

𝑎[#] = 	𝜎(𝑧[#]) ℒ(𝑎[0], y)𝑧[0] = 𝑊[0]𝑥 + 𝑏[0] 𝑎[0] = 	𝜎(𝑧[0])

Neural Network Gradients
	𝑊[0]

𝑏[0]

𝑑𝑍[0] = 𝐴[0] − 𝑌

𝑑𝑊[0] =
1
𝑚𝑑𝑍[0]𝐴 # :

𝑑𝑏[0] =
1
𝑚𝑛𝑝. 𝑠𝑢𝑚(𝑑𝑍 0 , 𝑎𝑥𝑖𝑠 = 1, 𝑘𝑒𝑒𝑝𝑑𝑖𝑚𝑠 = 𝑇𝑟𝑢𝑒)

𝑑𝑍[#] = 𝑊 0 E𝑑𝑍[0] ∗ 𝑔[#]′(Z #)

𝑑𝑊[#] =
1
𝑚𝑑𝑍[#]𝑋E

𝑑𝑏[#] =
1
𝑚𝑛𝑝. 𝑠𝑢𝑚(𝑑𝑍 # , 𝑎𝑥𝑖𝑠 = 1, 𝑘𝑒𝑒𝑝𝑑𝑖𝑚𝑠 = 𝑇𝑟𝑢𝑒)

Fully	Connected	Neural	Network	using	Tensorflow
• https://github.com/aymericdamien/TensorFlow-
Examples/blob/master/notebooks/3_NeuralNetworks/neural_network_raw.ipynb

• Follow-up
• For	the	first	10	images	in	mnist.test.images	
• Display	Image
• Compute	the	prediction,	then	print	the	image	and	prediction	by	the	model
• Change	the	number	of	neurons	in	hidden	layers	1	and	2
• Change	the	activation	function
• Change	number	of	layers

High	Bias?
(Training	data	accuracy)

• Bigger	Network
• Train	longer
• NN	architecture	

search

Y

N

High	Variance?
(Test	data	accuracy)

Y • More	training	data
• Regularization
• NN	architecture	search

N

Done

High	Bias
(Underfitting)

High	
Variance
(Overfitting)

High	Bias
&	High	
Variance

Low	Bias	
& Low	
Variance

Training
Error

15% 5% 15% 5%

Testing	
Error

15% 15% 30% 5%

Lunch

Deep	
Learning

• Neural networks with lot more hidden layers
(tens or hundreds)

• Types of Deep Neural Networks
• Convolutional Neural Networks
• Recurrent Neural Networks
• Autoencoders
• Restricted Boltzmann Machines
• Generative Adversarial Networks

• Why now?
• Data explosion
• GPUs and other SIMD architectures
• Some advancements in neural networks

• Nobody knows why it works but it works
• End-to-end Learning

• No need for feature engineering

Deep Learning

Convolutional	Neural	Networks

http://cs231n.github.io/convolutional-networks/

Types	of	Layers:
• Convolution	Layer
• ReLU	Layer
• Pooling	Layer
• Dropout	Layer
• Softmax	Layer

Convolution	Operator	in	Convolutional	Neural	Networks

https://community.arm.com/graphics/b/blog/posts/when-parallelism-gets-tricky-
accelerating-floyd-steinberg-on-the-mali-gpu

• CNN	Hyper	Parameters
• Number	of	Filters	(#	of	feature	maps,	
depth	of	output	layer)

• Filter	dimensions
• Zero	padding
• Stride

Parameter	Sharing

• The	kernel	weights	are	shared	across	the	image
• Reduces	number	of	parameters
• Improves	generalization	capability	of	the	model

Pooling	in	CNN

Convolutional	Neural	Networks

https://community.arm.com/graphics/b/blog/posts/when-parallelism-gets-tricky-accelerating-floyd-steinberg-on-the-mali-gpu

INPUT	->	[[CONV	->	RELU]*N	->	POOL?]*M	->	[FC	->	RELU]*K	->	FC
*	Indicates	repitition
POOL?	– Optional	pooling	layer
M	>=	0
N	>=	0
K	>=	0

Features	learned	in	CNN

https://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/

Some	Popular	CNNs

• LeNet	(1990)
• AlexNet	(2012)
• ZF	net	(2013)
• GoogLeNet	(2014)
• VGGNet	(2014)
• ResNet	(2015)

Little	Data	(More	
hand	engineering)

Lots	of	Data	(Less	hand	
engineering	and	simpler	
algorithms)

Speech	
Recognition

Image	
Recognition

Object	
Detection

Source	Andrew	Ng

AlexNet	Exercise	with	IBM-Caffe

• /opt/DL/caffe-ibm/examples/00-classification.ipynb

Transfer	Learning

Transfer	Learning	Scenarios
• Fixed	Feature	Extractor
• Fine	Tuning	the	ConvNet

• Train	entire	or	part	of	the	network
• Caffe-Zoo

Transfer	Learning	Exercise	Using	Caffe
• /opt/DL/caffe-ibm/examples/02-fine-tuning.ipynb
• Follow-up

• Try	different	images

Applications	of	RNNs

Music generation ∅

Speech recognition “The quick brown fox jumped
over the lazy dog.”

Sentiment classification “There is nothing to like
in this movie.”

DNA sequence analysis AGCCCCTGTGAGGAACTAG AGCCCCTGTGAGGAACTAG

Machine translation Voulez-vous chanter avec
moi?

Do you want to sing with
me?

Video activity recognition Running

Name entity recognition Yesterday, Harry Potter
met Hermione Granger.

Yesterday, Harry Potter
met Hermione Granger.

Summary of RNN types

𝑎LMN

𝑥L#N

𝑦PL#N

One to one One to many

𝑎LMN

𝑥

𝑦PL#N 𝑦PL0N 𝑦PLEQN

⋯

𝑥L0N 𝑥LESN

𝑎LMN

𝑥L#N

𝑦P	

⋯

Many to one

𝑎LMN

𝑥L#N

𝑦PLEQN	

⋯

𝑥L0N 𝑥LESN

𝑦PL#N	 𝑦PL0N	

Many to many Many to many

𝑎LMN

𝑥L#N

𝑦PL#N	

⋯

𝑥LESN

𝑦PLEQN	

⋯⋯

RNN	Forward	Propagation

𝑎LMN

𝑥L#N

𝑦PL#N

𝑎L#N

𝑥L0N

𝑦PL0N

𝑎L0N

𝑥LTN

𝑦PLTN

𝑎LESU#N

𝑥LESN

𝑦PLEQN

⋯

RNN	Parameters

𝑎LVN = 𝑔(𝑊WW𝑎LVU#N +𝑊WX𝑥LVN + 𝑏W)

𝑦PLVN = 𝑔(𝑊YW𝑎LVN + 𝑏Y)

Recurrent	Neural	Networks
https://github.com/nfmcclure/tensorflow_cookbook/blob/master/09_Recurre
nt_Neural_Networks/03_Implementing_LSTM/03_implementing_lstm.ipynb

Thank	You

