
RCP Mail 2.0 -- Data Binding, Commands
and Common Navigator Handout

Frank Gerhardt, Michael Scharf, Kai Tödter, Boris Bokowski, Francis Upton IV, Paul Webster

All rights reserved. Distributed under Creative Commons [1] Attribution-Noncommercial-Share
Alike 3.0 United States License

Abstract

The RCP Mail example shows its age. Many new and useful features have been added to the
Eclipse Platform since the example was written, and it is time to take the example to new levels.

In a hands-on way, we will bring the example up to date by adopting some of the more interesting
new APIs developed since the original RCP Mail example was written.

In particular, we will show the following:

How to use the new Commands API to contribute to menus, toolbars, and context menus,
and how to create key bindings.
How to use the Common Navigator to provide a view that shows multiple sets of unrelated
content.
How to use the data binding framework to make the UI code easier to write, and easier to test.

Explanations of the concepts will be given by members of the Eclipse Platform UI team, while the
concrete examples will be explained by experienced Eclipse professionals.

We will also show the different tools that are provided by Eclipse PDE and JDT to help you
developing RCP applications.

http://www.eclipsecon.org/2009/sessions?id=641 [2]

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

1 of 23

List of Slides

Abstract
List of Slides
The Plan
Steps
Set-up
The Result
Samples
Comparing Steps
Getting Closer
Before
After
The Model
RCP Mail Classes
Databinding Plug-ins
Data Binding Tour
Vision
Model View Controller
Concepts
IObservable
Binding
DataBindingContext
Goal
Plan
The New Server Wizard
Binding Text Fields
Converters and Validators
Validation
Control decorations
Data binding tree content provider
NavigationView
Goal
Plan
Table Binding
Adding Messages View
Exercise
Command Framework
Handlers
Menu Contributions
Using Commands
Handlers
Handlers - Pick one
Handlers
Creating Multiple Handlers
Evaluating Core Expressions
Sync With Server Command
Active Keybindings
Active Keybindings - active contexts
Keybindings in the mail App
Exercise
Common Navigator Framework

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

2 of 23

CNF - Adding Contacts
CNF - What does it do?
CNF - Parts
CNF - Implementations
CNF - Remaining Steps
Step 12: TreeViewer -> CNF
Step 13: Adding rcpmail.contacts plugin
Step 14: Exercise
Acknowledgements
External Links

The Plan
In this tutorial you will learn about

Data binding - Frank and Boris
Command framework - Kai and Paul
Common Navigator Framework (CNF) - Michael and Francis

We start with the RCP Mail you probably know already

Then we add one feature at a time, with explanations and live pair-programming

You can follow us along in your IDE using the provided samples

We will have a programming exercise at the end of each block (3)

Steps

00: Original RCP Mail 1.0
01: Introduction of the Model (and artwork)
02: The New Server Wizard
03: Adding data binding
04: Adding validator and error messages
05: Adding field decorations
06: Using data binding in the NavigationView (ContentProvider)
07: Adding a view with a table of Messages
08: MessageView: 1. use selection of NavigationView, 2. bind table contents to selection details
09: Exercise: port binding with validator
10: Commands: add/change About, New Server command, ways of placing it in the UI,
MarkAsSpam command, consolidate predefined actions/commands, Sync command,
enabledWhen, visibleWhen, Delete command
11: Exercise: File/Exit and New Window command: exercise
12: CNF instead of SimpleNavigator, change in-place
13: Add Contacts plugin model and content/label providers
14: Exercise: Hook Contacts plugin to CNF

Set-up

You need

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

3 of 23

Eclipse SDK 3.4.x or higher as your IDE
Eclipse SDK 3.5M6 as your target platform
Our samples

Code for each step, rcpmail-00 to rcpmail-99
Handout (these slides)

You can get it from

Download (slow in the conference center)
SDK from eclipse.org
Our samples from Kai's server. [3] Continuous build!

USB sticks
A snapshot of our samples

The Result

1 minute demo of the features

Samples
The zip file, e.g. rcpmail-tutorial-2.0.0.v2009*.zip, contains
workspace projects

Open Eclipse with a new empty workspace

If you are not using 3.5M6 for development, set your target platform
to 3.5M6

Import the projects from the zip file using Import > Existing
projects into Workspace. Choose "Select archive file"

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

4 of 23

Every step contains a launch configuration. Try starting rcpmail-99

If you have problems, raise your hand and someone of us will come
and help you

Comparing Steps
You can easily compare two steps to see what has changed

Select the old and the new project in the package explorer and invoke from the context menu
Compare With > Each Other

Choosing the first and second selection carefully puts the previous project always on the left and
the next on the right

Getting Closer

The first topic area is Data Binding

But: we need to bore you with some ground work first

For a meaningful demo of data binding we introduce a domain model

While we are laying the foundation, we also update the artwork

Before

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

5 of 23

Have a look at rcpmail-00 in your workspace and launch it using the provided launch config

After

Have a look at rcpmail-01 in your workspace and launch it using the provided launch config

The Model
The model is a simple JavaBean model

ModelObject is the base class providing PropertyChangeSupport

Changes to the template generated by the SDK

Model, Server, Folder, Message
Increased bundle version to 2.0.0

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

6 of 23

Including test data
Icons, splash

Look at the model in the rcpmail.model package of rcpmail-01

RCP Mail Classes

Databinding Plug-ins
Databinding comes in three layers

WorkbenchObservalbes in org.eclipse.ui1.
org.eclipse.jface.databinding2.
Four core plug-ins3.

org.eclipse.core.databinding
org.eclipse.core.databinding.beans
org.eclipse.core.databinding.properties
org.eclipse.core.databinding.observables

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

7 of 23

Data Binding Tour

We introduce data binding in four areas

Wizard to create a new mail server (new in 2.0)1.
Tree for servers and folders2.
Table of messages (new in 2.0)3.
Message display4.

At the end of the data binding tour will be an exercise where you will add your on binding to a text
field in the wizard.

Optional: new column, or third level in tree.

Vision
Get rid of listeners in UI code!

Why?

Hard to write, hard to maintain.
For every aspect:

Copy initial state into widget.
Hook listener (to widget, to model).
Write code to sync state incrementally.
Validation, conversion typically not separated.
Threading.

Model View Controller

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

8 of 23

Concepts
The two main concepts, and layers are

Observables
Bindings

Note: by convention UI always left, model always right, on diagrams and in the API, see e.g.
DataBindingContext, ViewerSupport

IObservable

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

9 of 23

This interface makes listening to changes uniform

Binding

Represents the binding between two IObservables

Needs to be added to a DataBindingContext

DataBindingContext

Creation and management of Bindings

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

10 of 23

Aggregates validation statuses

Goal
We implement a wizard with several text fields

1 minute demo

Plan

We do it in four steps

the wizard itself1.
adding data binding2.
adding validation and error messages3.
adding field decorations4.

We take the first step from the samples and show you the
second and third step. We'll take the fourth from the
samples again.

The New Server Wizard
We use the MessagePopupAction action and open the wizard from run()

to create a mailbox
at first without command (using messagePopup action) and no databinding yet
only layout and widgets

Launch rcpmail-02 to see the wizard

Binding Text Fields

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

11 of 23

In wizard: binding of text fields to int and string

DataBindingContext dbc = new DataBindingContext(); 01.
dbc.bindValue(SWTObservables.observeText(hostnameText, SWT.Modify), 02.
 BeansObservables.observeValue(server, "hostname")); 03.

Converters and Validators

new UpdateValueStrategy().setBeforeSetValidator(new IValidator() { 01.
 public IStatus validate(Object value) { 02.
 String s = (String) value; 03.
 if (s.contains(" ")) { 04.
 return ValidationStatus.error("no spaces please"); 05.
 } 06.
 return ValidationStatus.ok(); 07.
} 08.

Validation

Provided by WizardSupport

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

12 of 23

Enables Finish button when not errors exist

Control decorations

Used for field validation or other decorations (help available, required field, etc).

Render an image next to a control.

Positioned on the left or right.

Do not take part in layout, no guarantees about clipping. Use margin!

Optional description text when user hovers.

Data binding tree content provider

Goal: For each parent, one IObservableList representing children.

To create these lists lazily, we provide a factory returning lists.

public IObservable createObservable(Object parent) { 01.
 if (parent instanceof Model) { 02.
 return BeanProperties.list("servers").observe(parent); 03.
 } 04.
 if (parent instanceof Server) { 05.
 return BeanProperties.list("folders").observe(parent); 06.
 } 07.
 return null; 08.
} 09.

Our (invisible) root element is "Model".

BeanProperties.list("servers") is a factory for creating IObservableLists.

Second constructor argument is a "TreeStructureAdvisor".

Is consulted when finding an element in the tree that has not been materialized: notice "polish"
when starting app.

Second purpose: optimize for elements without children.

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

13 of 23

NavigationView

Data binding label provider

Needs to listen to attributes of materialized ("known") elements.

Data binding content provider has getKnownElements().

treeViewer.setLabelProvider(new MailLabelProvider(contentProvider 01.
 .getKnownElements())); 02.

Label provider needs to know which attributes to listen to.

MailLabelProvider(IObservableSet knownElements) { 01.
 super(Properties.observeEach(knownElements, BeanProperties 02.
 .values(new String[] { "name", "hostname", "messages" }))); 03.
 initializeImageDescriptors(); 04.
} 05.

Then, just override getText() with computation of label.

public String getText(Object element) { 01.
 if (element instanceof Server) { 02.
 return ((Server) element).getHostname(); 03.
 } 04.
 if (element instanceof Folder) { 05.
 Folder folder = (Folder) element; 06.
 return folder.getName() + " (" + folder.getMessages().length + ")"; 07.
 } 08.
 return null; 09.
} 10.
 <p>Look, Mom, no listeners!</p> 11.
 <p>We will demo later how labels are updated correctly.</p> 12.

Goal

We implement a new view with a table of messages

1 minute demo

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

14 of 23

Plan

What we need to do is

the view and a TableViewer
adding data binding to the TableViewer
adding selection awareness

Table Binding

Similar to Tree Binding

Using ObservableListTreeContentProvider and ObservableMapLabelProvider

Content provider needs an IObservableFactory

Label provider needs to know the content provider's known elements

Label provider observer all properties of the known elements

Adding Messages View

Launch rcpmail-07 to see the new view, still with an empty table

It uses a WriteableValue for it's "input", like the MessageTableView

Exercise
Basic: Add validator for port in wizard.

Alternative: Make message subject editable.

Advanced: Add another column to table, e.g. isRead, (using a nested property?)

Keeners: Add messages to tree, under Folders (for fun, not because it makes sense UI wise).

Command Framework
A command is an abstraction of some semantic behaviour.
A command is not an implementation of that behaviour. That's a handler.
A command is not the visual presentation of that behaviour. That's a menu contribution.

<command categoryId="rcpmail.category" 01.
 description="Synchronize with Server" 02.
 name="Synchronize" id="rcpmail.syncServer" > 03.
</command> 04.

Handlers

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

15 of 23

A handler implements one behaviour for a command.
The active handler controls the command's enabled state.
Handlers most commonly extend AbstractHandler.
Handlers are provided an application context in their execute(*) method.

// CreateServerHandler.java 01.
public Object execute(ExecutionEvent event) { 02.
 WizardDialog dialog = new WizardDialog(HandlerUtil 03.
 .getActiveWorkbenchWindow(event).getShell(), 04.
 new CreateServerWizard()); 05.
 dialog.open(); 06.
 return null; 07.
} 08.

Menu Contributions
Menus and Toolbars are important for executing application functionality.
Menu Contributions create the menu and toolbar structures and insert them into the correct
eclipse location.

<menucontribution locationuri="menu:org.eclipse.ui.main.menu"> 01.
 <menu id="fileMenu" label="&File"> 02.
 <command commandid="rcpmail.openNewWindowCommand" icon="icons/silk
/application_form_add.png" label="New &Window" style="">

03.

 </command> 04.
 <separator name="rcpmail.separator1" visible="true"> 05.
 </separator> 06.
 <command commandid="rcpmail.command.createServer" icon="icons/silk
/server_add.png" label="New &Server" style="">

07.

 </command> 08.
 </menu> 09.
</menucontribution> 10.

Using Commands
The old version of this RCP app uses ActionFactory to generate Actions to be used in the main
menu. In the new version, we'll use commands to create the main menu instead.

First, we'll replace the about action with the equivalent commands.

We will need to place the Open New Window command correctly when we replace the
ActionFactory action.

Handlers
The default handler case is useful, but also uninteresting.
Multiple handlers can register to handle behaviour for a command.
At any give time there can be either 0 or 1 active handlers for a command.
Handlers can be declaratively or programmatically activated.

// often in createPartControl(Composite) 01.
IHandlerService hs = (IHandlerService) getSite().getService(02.
 IHandlerService.class); 03.
markAsSpamHandler = new MarkViewAsSpamAndMoveHandler(this); 04.
hs.activateHandler(MarkAsSpamAndMoveHandler.MARK_AS_SPAM_COMMAND_ID, 05.
 markAsSpamHandler); 06.

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

16 of 23

Handlers - Pick one

Say we want the refresh command to refresh information in the active view:

Handlers

The three most common handler contribution types are:

A default handler - this is a global handler, usually instantiated once
Handler for a part - this handler will deal with a specific type of view or editor
Handler for a selection - this handler is usually keyed off of the selection type

There are a couple of ways to contribute handlers at the different levels:

Declarative handlers use activeWhen and extract needed state from the application context.
Programmatic handlers are activated with part creation.

Creating Multiple Handlers

We want to introduce the Mark As Spam command. In the Message View, it should mark the
message as spam and move it to the Junk folder. In the Message Table View, it should mark the
one or more selected messages as spam and move them to the Junk folder.

If we provide the ability to delete messages it would work in a similar fashion. The message would
be moved to the Trash folder.

Evaluating Core Expressions

The IEvaluationService takes care of handlers activeWhen and enabledWhen, menus
visibleWhen, and activities enabledWhen.
This service is one of the main listeners to source variable changes.
Expressions that use the changing variable are re-evaluated.
Most of the variables available from the platform are listed in org.eclipse.ui.ISources

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

17 of 23

<enabledWhen> 01.
<with 02.
 variable="selection"> 03.
 <iterate 04.
 ifEmpty="false" 05.
 operator="and"> 06.
 <instanceof 07.
 value="rcpmail.model.Message"> 08.
 </instanceof> 09.
 </iterate> 10.
 </with> 11.
</enabledWhen> 12.

Sync With Server Command
The Sync With Server command should be enabled when a single folder is selected. This
command is general to the RCP and so can easily be contributed in the plugin.xml.

Active Keybindings

Different workflows require that some keys operate differently, and in Eclipse that means
execute different commands.
We don't want our keybindings to be overly dynamic, however.
2 main ways that keybindings change are scheme and contexts:

A scheme is a group of keybindings - very static.
A context scopes a keybinding, and contexts change with the program's focus.

For example, when editing text CTRL+D deletes a line. But when inputting in the Console
view, CTRL+D produces the EOF

 01.
<key 02.
 commandId="rcpmail.syncServer" 03.
 schemeId="rcpmail.key.scheme" 04.
 sequence="CTRL+T"> 05.
</key> 06.

Active Keybindings - active contexts

The IBindingService gets the active contexts from the IContextService.
The IBindingService treats the contexts like an active tree.
The IBindingService prunes the tree depending on which component has focus.
This allows the binding service to look up the parameterized command for a key sequence.

Keybindings in the mail App

As with most applications, we want keybindings. There is a choice to make:

Use the org.eclipse.ui.defaultAcceleratorConfiguration. This makes all of the default

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

18 of 23

workbench keybindings available.
Create your own scheme, rcpmail.key.scheme. This gives you control over all of the
keybindings in your application.

The RCP mail app will use its own scheme to control the keybindings. In this case, it is advisable
to copy over the 5 standard keybindings: cut, copy, paste, select all, delete.

Exercise
File/Exit and New Window commands

Common Navigator Framework

Adding Contacts

CNF - Adding Contacts
Add contacts to existing RCP mail application.1.
Base plugin unaware and unchanged.2.
Need to hook to the population of the root of the model (the Model object).3.
New Navigator Content Extension is dynamically selected based on the wildcard in the
viewer.

4.

CNF - What does it do?
Dynamically

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

19 of 23

 Determined at runtime based on expressions.

Hose together different collections of

 Collections are not related or even known to each other.

Content

 "Content" is content providers, label providers, sorters, filters, drag handler.

CNF - Parts
CommonNavigator - A ViewPart; the Project Explorer is an instance of the CommonNavigator.

CommonViewer - A Viewer.

Navigator Content Extensions - Declare wads of content that can be dynamically enabled.

These content extensions have user visible names and can be dynamically enabled/disabled in
the view context menu.

Resource Content Extensions - A set of extensions in org.eclipse.ui.navigator.resources that
provide the content for resources.

CNF - Implementations
Project Explorer - Main view of the workspace with other content built on resources.

Resource -> JDT, Resource -> CDT, Resource -> JDT -> WTP, etc.

Team Synchronization - Uses the CNF to provide the different types of views, an example of a
new of the CNF on an alternate viewer.

RCP Apps that use Resources - Allows RCP model objects to be contributed.

Large RCP Apps - RCP apps that have many sets of content.

CNF - Remaining Steps

Step 12 - Add the CNF to the basic rcpmail application replacing the viewer.

Step 13 - Add the rcpmail.contacts plugin that with the contacts model objects and contact
content/label providers.

Step 14 (Exercise) - Add the extension to the rcpmail.contacts plugin hooking it to the CNF.

Step 12: TreeViewer -> CNF
Steps to change the TreeViewer to CNF:

Open PDE editor for manifest runtime tab, add new dependency: org.eclipse.ui.navigator.1.

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

20 of 23

Go to the extensions page and select the org.eclipse.ui.views->Mailboxes view.2.
Change the id to rcpmail.NavigatorView and the class to rcpmail.EditedCommonNavigator.
We'll come back to it. Change the name to MailboxesCNF.

3.

Change the allowMultiple property to false.4.
Add a new extension: org.eclipse.ui.navigator.viewer5.
Rightclick on it and select New->viewer. Change the viewerId to rcpmail.NavigatorView6.
Rightclick on the org.eclipse.ui.navigator.viewer extension and choose
New->navigatorContentBinding. Change the viewerId to rcpmail.NavigatorView

7.

Rightclick on it and choose New->(includes), rightclick on it, and select
New->contentExtension

8.

Change the pattern to rcpmail.* (this allows us to be extensible).9.
Add a new extension: org.eclipse.ui.navigator.navigatorContent.10.
Rightclick on it and choose New->navigatorContent11.
Change it's id to rcpmail.MailboxContent. Change it's name to MailboxContent.12.
Change the contentProvider to rcpmail.MailContentProvider13.
Change the labelProvider to rcpmail.NavigatorLabelProvider14.
Set priority to Normal and activeByDefault to True.15.
Rightclick the MailboxContent contentExtension and choose New->(enablement)16.
Rightclick on (enablement) and choose new instanceof.17.
Set the value to rcpmail.model.ModelObject.18.
Open the Perspective.java and create a new field: private final String NAVIGATOR_ID =
"rcpmail.NavigatorView";

19.

Change the line: layout.addStandaloneView(NavigationView.ID, false, IPageLayout.LEFT,
0.25f, editorArea); to: layout.addStandaloneView(NAVIGATOR_ID, true, IPageLayout.LEFT,

0.25f, editorArea);

20.

Comment out the line: //layout.getViewLayout(NavigationView.ID).setCloseable(false);21.
Copy MailLabelProvider to NavigatorLabelProvider.22.
In NavigatorLabelProvider, change the superclass to LabelProvider;23.
replace the constructor with a no-arg constructor;24.
and remove the reference to folder.getMessages().25.
At the MailboxesCNF view click on the class (new class wizard) to create a new class
extending the CommonNavigator

26.

Change the superclass to org.eclipse.ui.navigator.CommonNavigator then click Finish.27.
Now we have to override the getInitialInput() method of the CommonNavigator by adding this
to our EditedCommonnavigator class:

 protected IAdaptable getInitialInput() { 01.
 Model.getInstance(); 02.
} 03.

28.

Now you can run the plugin by rightclicking it and selecting Run as->Eclipse Application.
You can see your brand new CommonNavigator view on the left side with the dummy servers
listed.

29.

Step 13: Adding rcpmail.contacts plugin
Add model objects for Contacts and Contact.1.
Add content provider ContactsContentProvider:

getElements() returns the Contacts header when it sees the Model object

2.

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

21 of 23

public Object[] getElements(Object inputElement) { 01.
 if (inputElement == Model.getInstance()) { 02.
 return new Object[] { Contacts.getInstance() }; 03.
 } 04.
 return null; 05.
} 06.

getParent() returns:

if (element instanceof Contact) 01.
 return Contacts.getInstance(); 02.
if (element instanceof Contacts) 03.
 return Model.getInstance(); 04.
} 05.

Add label provider ContactsLabelProvider.3.

Step 14: Exercise

Hooking rcpmail.contacts plugin to the CNF

Steps to add the navigator content extention to the rcpmail.contacts plugin

Add a new extension: org.eclipse.ui.navigator.navigatorContent.1.
Rightclick on it and choose New->navigatorContent2.
Change it's id to rcpmail.ContactsContent. Change it's name to Contacts Content.3.
Change the contentProvider to rcpmail.contacts.ContactsContentProvider4.
Change the labelProvider to rcpmail.contacts.ContactsLabelProvider5.
Set activeByDefault to True.6.
Rightclick the ContactsContent contentExtension and choose New->(enablement)7.
Rightclick on (enablement) and choose new or.8.
Rightclick on (or) and choose new instanceof.9.
Set the value to rcpmail.model.Model.10.
Rightclick on (or) and choose new instanceof.11.
Set the value to rcpmail.contacts.model.Contacts.12.
Rightclick on (or) and choose new instanceof.13.
Set the value to rcpmail.contacts.model.Contact.14.

Acknowledgements
This presentation uses the Slideous [4] package by Prof. Stefan Gössner, licensed under the
GNU LGPL License 2.1 [5].

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

22 of 23

External Links

This section lists all hyperlinks included in the presentation. When printing HTML, usually only
the blue and underlined hyperlinks are shown and the targets of all hyperlinks are "lost". This
handout, when printed (only!), includes a number like a footnote (e.g. [123]) after each hyperlink
to refer to the following list of targets.

[1] http://creativecommons.org/licenses/by-nc-sa/3.0/us
[2] http://www.eclipsecon.org/2009/sessions?id=641
[3] http://max-server.myftp.org/rcp-mail/download/rcpmail-downloads.html
[4] http://goessner.net/articles/slideous/
[5] http://creativecommons.org/licenses/LGPL/2.1/

RCP Mail 2.0 -- Data Binding, Commands and Common... 23.03.2009 07:08

23 of 23

