
Cynthia Liu, Azza Ahmed, Jacob Heldenbrand, Ramshankar Venkatakrishnan, Liudmila Mainzer

Comparative Analysis of Genomic Sequencing Workflow Management Systems

ACKNOWLEDGEMENTS
The authors would like to thank the Mayo Grand
Challenge and the Mayo-Illinois Alliance, the Institute
of Genomic Biology, IHSI, and the University of
Khartoum for their invaluable contributions to this
project.

REFERENCES
1. Ahmed A., Heldenbrand J., Asmann Y. et al. Managing

genomic variant calling workflows with Swift/T. Manuscript
in review.

2. WDL User Guide. Broad Institute.
https://software.broadinstitute.org/wdl/documentation/

3. Di Tommaso P., Chatzou M., Floden EW. et al. Nextflow
enables reproducible computational workflows. Nature
Biotechnology 35, 316–319(2017). doi:10.1038/nbt.3820

COMPARISON ASPECTS[1]

• USER INTERFACE: the means by which the user
interacts with the software. Possible options
include command-line interface (CLI), read-eval-
print-loop (REPL), and integrated development
environment (IDE) .

• CONTAINERIZATION SUPPORT: available methods
to virtualize an operating system to run across a
host without separate virtual machines

• CHECKPOINTING: ability to save application state
periodically, allowing for reboot from prior state
upon failure

• CACHING: ability to store frequently used data in
memory to reduce data retrieval time

• PORTABILITY: usability of software in a variety of
different operating environments

• DISTRIBUTED EXECUTION ENGINE: software
systems on computer cluster that acts as a single
machine. They allow for high computational
performance without the need to deal with
challenges of parallel computing like task
scheduling and fault tolerance.

• MODULARITY: ability to divide a program into
separate sub-programs, allowing for design
flexibility.

• ERROR HANDLING STRATEGY: functionalities to
address and resolve errors that arise during
program execution

• PARALLELIZATION: methods to distribute data
among multiple computing nodes, allowing many
instances of the same function to run at the same
time.

• SPARK support: GATK is moving from being
deployed on the grid, to cloud-based analytics
computation using mapreduce in SPARK. Thus
SPARK support will be required of future variant
calling workflows.

INTRODUCTION
As genomic sequencing becomes widely
implemented in academic and commercial
settings, there is a need for new tools to manage
the sheer volume of data and the complexity of
sequencing analyses. The gold standard for
modern genomic variant investigation, the GATK
Best Practices pipeline, is a complex workflow with
a plethora of different steps. In order to effectively
and efficient manage workflows with many
samples, workflow management systems are
needed to wrap bioinformatics commands that
streamline the variant calling process. Here, we
compare the various aspects of three popular
workflow management systems for large-scale
genomic sequencing analyses: Cromwell/WDL,
Nextflow, and Swift/T. Though all three serve the
same general purpose, their different inbuilt
functionalities lend them to different usages. Here,
we present a qualitative comparison of the three
and a delineation of key comparison metrics, with
the hope that it will aid users in selecting the best
workflow management system for their high-
performance computational needs.

Workflow Management Systems
Cromwell WDL: A workflow management system
intended for scientific workflows, Cromwell/WDL is
supported by the Harvard/MIT Broad Institute, which
also sets the GATK Best Practices. Intended to be a
bridge between complex domain-specific languages
and simple scripts, Cromwell/WDL emphasizes
performing complex tasks like parallelization in a
user-friendly manner suitable for non-programmers.

Nextflow: A domain-specific language and workflow
management system intended for complex
computational pipelines, Nextflow is based on
common programming languages Groovy and Ruby.
It is incredibly user-friendly with inbuilt functionalities
like error handling and metadata compilation.

Swift/T: A C-like language designed for “high-
performance dataflow computing”, Swift/T is
intended for computation on a massive scale.
Though it contains many unique features like load-
balancing, Swift/T programming is less intuitive and
may be overwhelming to novice programmers.

CONCLUSIONS
The varying aspects of workflow management
systems lend themselves to specific ideal usages.

• Swift/T, with its ability to rapidly perform
thousands of small processes, is ideal for
exascale analyses.

• In contrast, Cromwell/WDL, backed by the
prominent Broad Institute, is best implemented in
commercial genomic analyses using the GATK
Best Practices pipeline.

• Nextflow’s unique functionalities make it a viable
option for both amateur programmers and
commercial users who seek to build user-friendly,
unbranched genomic analyses.

Comparison Aspect Cromwell/
WDL[2] Nextflow[3] Swift/T[1]

Nature of the system Execution engine WL and execution WL and execution
User interface CLI CLI, REPL, IDE CLI

Containerization support Docker Docker, Singularity None

Checkpointing & caching Yes Yes No

Portability LSF, HTCondor,
Google JES

LSF, NQSII,
HTCondor,

Kubernetes, Ignite,
DNAnexus

Cray aprun

Distributed execution engine Spark Apache Ignite/ MPI MPI-based

Modularity Yes Yes Yes

Retry on error No Yes Yes, if failed QC

Error handling strategy Continue
Continue, retry,

terminate, organized
finish

Continue upon failing
quality control

User notifications Easy Bash addition Built-in Easily implemented

Parallelization Scatter-gather Implicit within
channels Implicit & complete

Documentation & community Extensive, supported
by Broad Institute

Extensive, with online
forums

Extensive
documentation &

tutorials

Ease of use Easy, but requires
Bash knowledge Easy Difficult, but with

many unique features

Tracing & visualization No Yes Some

SPARK support Yes No ?

Nextflow error handling commands:
• terminate: terminates execution as soon as error

emerges, kills pending processes (default condition)
• finish: orderly shutdown of workflow; waits for

completion of any submitted processes
• ignore: ignores execution errors from processes, sends

message to user that event has occurred
• retry: re-submit/re-execute process that returned an

error condition. Can specify maxErrors and maxRetries
(these are disabled as a default)

Nextflow has built in functionality to create
execution, trace, and timeline reports, as well as
DAG visualizations. Execution reports (right)
consist of a workflow summary, a resource usage
graph, and a list of tasks alongside their
respective runtime metadata. The DAG
visualization will create a direct acyclic graph of
the workflow, with processes illustrated as nodes.

file	alignBams[]	=	
alignRun(sampleLines,	variables,	failureLog)	=>
logging(variables[“TMPDIR”],	timingLog,	“alignlogs”);

assert(
size(alignBams)	!=	0,
“FAILURE:	The	aligned	bam	array	was	empty:	
none	of	the	samples	finished	properly”

);

Data logging and user error notifications in Swift/T from
https://github.com/ncsa/Swift-T-Variant-Calling

inputFiles =	Channel
.fromPath(params.inputFiles)
.splitText()	
.splitCsv(sep:	"\t")	

Sample Cromwell/WDL scatter task to perform read
mapping in parallel on many samples from

https://github.com/ncsa/MayomicsVC

Parallelization through channels in Nextflow, where the
same process is performed on everything in the channel

