
NCSA Kubernetes
Developer Bootstrap

● Background
● Model
● Tour of the objects
● Getting Started
● Resources

Kubernetes Strengths
● Maintaining services - automated
● Scaling container based services
● Deploying and managing microservice-oriented systems
● Recovery and resilience to hw and sw faults

○ Pull the plug, plug it back in, comes back as it was
● Portable - not tied to container impl. Storage impl. etc.
● Scalability - laptop to thousands of nodes
● Outstanding community

Difficulties
● Minimal IT core services and multi-tenancy
● K8s is a container OS - model from google DC model
● No PaaS abstractions - need to build or use others
● Many low level ropes to get hung on

○ Hacking before understanding will hurt
● Fly by-wire - no console logins*

○ Need tooling for monitoring/management
● A dizzying pace - K8s, tools, ecosystem move so fast
● Difficult to deploy in production - no common process

You should understand

● Google’s data-center model and GIFFE, SRE
○ Echos of the borg - the mother of Kubernetes

● Advanced container facilities and linux process interfaces
○ Namespaces, linux capabilities, control groups,

container models and implementations
● 12 factor model
● Microservices concepts and philosophy

○ More than tiny things services and REST

Core Concepts – API, Object Storage
● API – Create, remove, alter objects, query objects,

watch events.
● Declarative – say what you want.

○ Reconciliation strategies makes it happen
○ Scale up, down, drain node, add node….

● Etcd under the hood stores everything
○ sequentially consistent consensus key-value store

● Pull the plug, bring it up. It resolves as it was.

Core Concepts - Execution
● Pod - 1 or more tightly integrated containers with

common IPC and network namespace.
● Strictly ephemeral – a container is never restarted ever,

abandoned and replaced
● Scheduler can kill containers any-time to manage cluster
● Hooks for start/stop/health/readiness
● Pod has cluster IP and cluster DNS for discovery
● pod cluster addresses are ephemeral - use discovery

Core Concepts - Network
● Everything addressable via IP has a cluster address

○ nodes, pods, endpoints, services, replicas …
● Everything can talk in-cluster

○ But pods can move, scale, etc. Addresses are not
stable, but discovery (DNS) is authoritative

● Services map from external into replicas
○ automatically or via an external load balancer

● No default multi-tenant network isolation (yet)
○ Use SDN: opencontrail, calico, weave

Core Concepts - ConfigMap & Secrets

● 12-factor config in environment - ConfigMap
○ Key-values from yaml, or filesystem source

● Consumable as env vars in pod spec or via mounted
path - i.e. /etc/nginx.conf

● Pod with mount can respond to updates - inotifywatch
● Secrets - sensitive storage (passwords, keys, creds, …)

○ Stored encrypted until use

Core Concepts – labels & selectors
● All objects can have arbitrary labels - key/value

○ Node, pod, service, configmaps, deployments, etc..
● API queries can select based on labels:

○ environment=production,tier=frontend
● Scheduler placement

○ Simple affinity: node-has-gpu: true
○ Topological affinity - advanced general run-time,

attraction/aversion with set calculus

Core Concepts – Namespaces & Auth

● Namespace is an administrative domain
○ Think personal sub-cluster
○ API

● 1.3 now has authz, authn, RBAC and ABAC
○ Spec roles and attributes against API objects

● Services account hierarchy
○ DCO > SRE > service > user account.

Other Options and Related Systems

● RedHat OpenShift - Redhat is a huge K8s contributor
○ Kubernetes behind more-traditional IT PaaS admin, management,

developer, deployment web tools
● Docker Swarm

○ Low-level container OS alternative to Kubernetes
○ “Consumer-level” ease, but docker is playing catchup

● MESOS
○ More mature DCOS
○ Many run K8s with MESOS scheduler

● Tectonic - CoreOS rktnetes - kubernetes on rkt container runtime

Kubernaut Learnings
● Talks: Look for anything in the last year, +1yr is questionable

○ K8s Architects: Brendan Burns, Tim Hockin
○ K8s monsters: Kelsey Hightower,
○ Systems Architectures: Adrian Cockroft, Martin Fowler, Joe Beda
○ Workshops/Conferences: KubeCon, CoreOSfest, Scale

● Groups:
○ K8s community meeting - weekly
○ K8s sigs: https://github.com/kubernetes/community/blob/master/README.md#special-interest-groups-sig

■ Most sigs have regular meeetings
● PaaS:

○ Openshift, deis, fabric8, Kel, https://trello.com/b/aSuCIZQo/docker-and-paas-resources
● Running: Run local in a VM - minikube
● Getting help: kubernetes office hours, k8s slack is manned by the engineering team

○

https://github.com/kubernetes/community/blob/master/README.md#special-interest-groups-sig
https://trello.com/b/aSuCIZQo/docker-and-paas-resources

