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CHAPTER

ONE

INTRODUCTION TO THE MAPREDUCE MODEL OF PARALLELISM

1.1 Peer Review Information

Creator Name: Mark McKenney

Content Title: Introduction to the MapReduce Model of Parallelism

Learning Objectives:

1. Describe the basic ideas of the mapReduce paradigm

2. Be able to construct mapReduce computations in scripting languages

3. Gain basic skills in: using the command line interface for MongoDB, loading a data set into MongoDB, per-
forming basic queries to explore aspects of that data set.

4. Describe the basic architecture of a mapReduce system.

5. Describe the implications of adding/removing hardware to a mapReduce system.

6. Describe the data model of a Mongo/BigTable/Hive type system.

7. Be able to construct and execute a mapReduce porgram on MongoDB

8. Be able to perform queries to explore the result of a mapReduce query.

Required Background Knowledge:

1. Ability to SSH into a server.

2. Basic programming skills. The user should be able to write, debug, and execute a program consisting 10 lines
of code in their language of choice.

3. Basic systems skills. The user should be able to remotely log onto a server and interact with a MongoDB .

4. Instructors: An instructor should have basic systems skills. The instructor should be able to install a MongoDB
server. Instructions for installing MongoDB on an existing Linux server are included in the module.

Resources Needed:

Students: Access to a computer with a shell from which you can remotely log into a Linux computer (putty on
windows, terminal on mac, you know already if you’re on Linux)

Instructors: Access to a server (I write from a Linux point of view) on which to host a MongoDB server. You local
Instructional Technologies Support should be able to set you up with a virtual machine, if you don’t have a server
lying around.

Work Mode:
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The module is structured as a self-contained document. Students can use the document themselves, or an instructor
can prepare a lecture based on the information and examples, and assign the document as reading or a reference.
Instructors have the flexibility to design the delivery of the material as they see fit.

How does this content relate to other materials in the project:

The other modules are not prerequisite to this one.

Feedback Needed:

I specifically need feedback, especially from the non-computer sciencers, about general accessibility of the document.
Does a GIS person, with the ability to write some basic code feel that the work, content, examples, language, etc. are
accessible. Do I need to define any terms more explicitly.

All other feedback is also welcome. (general feedback)

1.2 The mapReduce Paradigm

Section Goals:

1. Describe the basic ideas of the mapReduce paradigm

2. Be able to construct mapReduce computations in scripting languages

The original concept of mapReduce has its roots in functional programming. Basically, a map will apply a function to
a set of input data, transform this data in some way, and emit the transformed data. A reduce will apply a function to
a set of input data, and essentially combine that input data in some way so that it returns a smaller set of output data.
Lets see an example:

Example
The following python program contains a map function that applies a function to each element of a list that will
increment that element. The reduce function then sums the elements. The function being applied in the map is an
anonymous function (i.e., a function that has no name and is not formally declared in an outer scope. So, the function is
only defined for this line of code). The lambda function in the map takes one argument x and increments it, returning
the incremented value. Similarly, the lambda function in the reduce takes two arguments, x and y, and returns their
sum.

>>> newNums = map( lambda x:x+1, nums )
>>> print newNums
[2, 3, 4, 5, 6]
>>> sum = reduce( lambda x,y: x+y, newNums )
>>> print sum
20

Notice that the lambda function in the map operates on a single item of the list of numbers. Therefore, each item in the
list can be processed by the lambda function in parallel. This is referred to as an embarrassingly parallel problem
because there are NO data dependencies among the list items and the application of the lambda function.

Similarly, the lambda function in the reduce can execute over the data items in the list in parallel, but not to the same
degree as the map, since it requires two data elements. Both of the following execution plans are valid for the reduce
above, but one will have more parallelism than the other:

((((2 + 3) + 4) + 5) + 6)

(2 + 3) + (4 + 5) + 6

Notice in the second plan that the 2 + 3 and 4 + 5 can execute in parallel.

4 Chapter 1. Introduction to the MapReduce Model of Parallelism
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The functional programming model of mapReduce sums up the behavior of a mapReduce computation very nicely,
from the programmer’s perspective. In fact, executing a massive mapReduce computation over thousands of compute
nodes is essentially identical to executing the python program above, from the programmer’s point of view; all that is
required is a mapper and a reducer, and the system will take care of the rest.

1.3 Extending the mapReduce Model to Massive Parallelism

Section Goals:

1. Describe the basic architecture of a mapReduce system.

2. Discuss the implications of adding/removing hardware to a mapReduce system.

3. Describe the data model of a Mongo/BigTable/Hive type system.

1.3.1 Basic Big Data Concepts and Definitions

Big data is a general term applied to a large variety of situations, and with numerous definitions. In general, big data
concepts tend to come into play when one or more of the three V’s of big data begin to be expressed in a particular
problem or application. The three V’s of big data are:

• Volume: there is a lot of data. Typically things get interesting when the terabyte mark is exceeded, and get more
interesting from there. Traditional databases and traditional data techniques can generally handle up to a TB
of data without having to get too complex (in terms of guaranteeing uptime, data duplication and backups, and
performance).

• Velocity: The data is generated, or arrives at the data center, very quickly. Anything that generates lots of data in
a short time. For example, experiments in the Large Hadron Collider create up to PB of data in less than second.
Facebook users are updating their accounts all the time.

• Variety: The data is not a fixed format, fixed size, or even consists of a fixed type of data. Traditional databases
require the declaration of relations with explicit structure, and usually, fixed size records. This is impossible in
many big data settings. Perhaps the data being stored evolves over time, perhaps the structure of records evolves
over time, perhaps not all records are complete. The system must be able to not only handle such data, but must
be able to query data in a variety of formats

Big data systems wrestle with problems of scale that are just not an issue in smaller systems. Systems may comprise
thousands of nodes. Even if the nodes are expensive, server grade hardware, node failures are going to be a problem.
Think about creating a new social networking application that stores user data. The company requires a lot of storage,
to store a lot of data items that must be quickly retrievable, that must provide some guarantee that data will not be lost,
and that must do all this on a budget. Thus, central design goals are typically to be:

1. Scalable: be able to grow the systems with minimal configuration, and with heterogeneous hardware.

2. Maintainable in the face of failures: if a node fails, the data stored on that node must already be duplicated or
triplicated on other nodes, and the system should notice when nodes fail and make sure all data that was stored
on that node is sufficiently replicated on other nodes. This must be done automatically.

3. Use commodity, heterogeneous hardware: nodes need to be flexible, the system should be able to grow without
upgrading existing nodes if desired.

4. Provide fast query and retrieval: the system needs some query mechanism that is highly parallel, flexible, and
relatively easy to use. Furthermore the queries must be able to possibly return huge results (more data than can
fit on a single node, possibly).

To achieve these goals, big data systems have traditionally been designed as a distributed file system combined with a
query mechanism

1.3. Extending the mapReduce Model to Massive Parallelism 5
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1.3.2 Google File System (GFS)

[GFS2003]

GFS was what really got the whole big data thing going on a large commercial scale. The idea was to create a file
system that can expand over multiple nodes (thousands) automatically, can automatically incorporate new nodes and
identify and de-incorporate faulty nodes, and can handle huge volumes of data.

Remember the Google application area. Web pages are crawled and stored on Google servers. The term crawled
means that a copy of the web page is downloaded to the Google servers, and all the links on that page are stored so that
they can be downloaded as well. The downloaded web pages are then processed into a form that is easily queryable
using massive parallelism. Crawlers are only so fast (see exercise below), and web pages need only be re-crawled
so often (see exercise below), so the velocity of data coming into the servers is not necessarily huge. But, they are
keeping a copy of the Internet, so volume is huge! Also, web pages are unstructured text, contain multimedia, etc., so
variability is huge.

Exercise
Web crawlers are only so fast. What limits the speed of crawling the web? Think of the architecture of the Internet,
the destination of all of those web pages that are crawled, bottlenecks, etc.

Web pages do not necessarily need to be re-crawled very often. What would be an exception to this rule? What are the
consequences of re-crawling more often vs. less often.

1.3.3 Basic Architecture of the GFS (and other similar distributed file systems)

The architecture of GFS and other similar file systems (Hadoop), is best understood if considered in the context of the
assumptions under which the systems are designed. These include:

1. The system is built from inexpensive, failure-prone hardware.

2. The system must be built from heterogeneous hardware. (the compute nodes do not need to be identical)

3. The system must be easy to maintain. In other words, adding nodes or removing nodes should be easy. In fact,
adding hundreds or thousands of nodes should require minimal software configuration.

4. High bandwidth is more important than low latency. There are very few, stringent response time requirements.

So, the distributed file system should be easy to manage on the hardware side, and the mapReduce interface should
make it easy to run massively parallel programs from the software side. In essence, everything should be easy. Think
about this. A huge installation of such a file system may have thousands of inexpensive, failure-prone nodes; therefore,
at any given time, at least one node may be broken. If adding a node to, or removing a node from, a system required
significant hardware and software configuration, the costs of paying people to do this would become prohibitive at
large scales. Also, nodes may not be able to be replaced before another node breaks, meaning that the system is
always running below peak capacity.

To achieve these goals, the architecture is remarkably simple. In its most basic form, such a distributed file system
contains 1 master node, and many file server nodes. The master node basically keeps track of which file servers
contain the files stored in the system. When a piece of information (lets say a copy of a webpage) needs to be inserted
into the system, the master node checks to see which file servers have space for it. The master node then sends the file
containing the web page to 𝑛 file servers where 𝑛 is the desired amount of duplication. The file servers simple store
the file.

The assumptions 1,2, and 3 are all satisfied by this basic architecture. Note that no hardware or software requirements
are imposed on the master or file servers. The only requirement is that the GFS code be installed. There is no
requirement for servers to be identical, or have any special features. Finally, data is stored on 𝑛 different physical
servers. Lets assume 𝑛 = 3, all data is stored in triplicate. If one server containing a particular piece of data breaks
and stops responding, the master will notice this, and realize it only has two copies of all data that was stored on

6 Chapter 1. Introduction to the MapReduce Model of Parallelism
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that server. The master will instruct the file servers that contain other copies of that data to copy that data to another
file server so that data is then, again, stored in triplicate. If a new node is added to the system, the master must
simply be told of its existence, and it automatically begins to use it. Clearly, such a file system enables relatively easy
management of a huge number of servers.

There is one more piece to the architecture, and that is the client. Essentially, a client is written to execute a particular
type of query. For example, lets say that a common query will be to count the number of web pages that contain the
word cat. However, we want to generalize this so that we can count the number of web pages that contain any user
specified word. A programmer can write a client that will do the following:

1. Get a query word from the user. Lets call this 𝑥.

2. The client will go to the master node to find out which web pages are stored in the system and which file server
each web page is on. The client will then go to each file server it needs to visit, read the web page, and count it
if it contains the word 𝑥 provided by the user.

3. The client will sum the results into a final count.

The important point to notice is that once a client is created, any user can simply use the client. This makes querying
the system super easy if the appropriate client exists. Most file systems of this type contain a mapReduce client.

Finally, notice that since the data is on independent servers, all servers can be accessed in parallel. In the example
where we count the number of web pages containing the word cat, each server can compute a count independently,
and the counts for various servers can then be merged (If you look back at the Python map reduce example, you should
be able to see how a mapper can be applied to each server independently, and results from each server get summed in
a reducer!)

1.3.4 Using a mapReduce Client

To execute a mapReduce query, we assume that we have a working Hadoop/GFS/other system set up that provides a
mapReduce client. Each system will have its own specifics over how we need to write our query, but in general, they
all follow the same form:

1. We need a map function that will be executed on every file in the system. That function will emit a key,value
pair to the client. The client will automatically group values together with matching keys.

2. We need a reduce function that will accept a key, and an array of values that were emitted with that key from the
mapper. The reducer will then perform some computation, and return another key,value pair. Again, the client
will store those in the system.

3. The result is a file containing a bunch of key,value pairs.

Example
Map and reduce functions have the following signatures:

𝑚𝑎𝑝(𝑘1, 𝑣1) → 𝑙𝑖𝑠𝑡(𝑘2, 𝑣2)

𝑟𝑒𝑑𝑢𝑐𝑒(𝑘2, 𝑙𝑖𝑠𝑡(𝑣2)) → 𝑙𝑖𝑠𝑡(𝑣3)

So, constructing mapReduce queries is easy for the programmer, just make 2 functions and don’t worry about paral-
lelism or synchronization. The client takes care of that for you.

Lets look again at an example similar to the cat counting example. In this example, lets assume we want to find the
number of times ALL words occur in our data set:

Example
Assume we have a working distributed file system that provides a mapReduce client. Further, we are storing files in
the file system such that each file contains the contents of a web page, and the file name of each file is the URL of the

1.3. Extending the mapReduce Model to Massive Parallelism 7
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web page. If we want to write a mapReduce query to count the number of times all words appear in those web pages,
we could write the following query:

(note that this is a common example query used in [GFS2003] and other places)

map(String key, String value):
// key: file name
// value: file contents

for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts

int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));

1.4 Getting MongoDB Up and Running

In this module, we use MongoDB as an example for a few reasons:

1. It is open source and freely available.

2. It is available on a variety of platforms.

3. A basic, yet usable, installation requires almost no configuration.

4. It can scale easily across multiple file servers, or run on a single machine.

5. The mapReduce functions are written in javascript, a language that is somewhat accessible to novice program-
mers.

6. MongoDB is lightweight enough that students can install and use an instance on their own laptops/desktops.

Here, we will briefly list the steps to install MongoDB on a working Linux server. The MongoDB website has
excellent documentation for installing a basic MongoDB instance on a variety of platforms. If you are an instructor,
your Instructional Technologies Support office should be able to provide you with a basic Linux server and user
accounts for your students. This tutorial uses the Ubuntu package manager, you will need to adapt to your own Linux
distribution.

Once you have a Linux server, you need to install the MongoDB system:

user@server/~$ sudo apt-get install mongodb
[sudo] password for user: [enter your password]

The above commands will install a basic 1 node MongoDB on your computer. At this point, you may need to start the
MongoDB, but most package managers will take care of this for you. If there is trouble, check the MongoDB website
tutorials for help.

At this point the MongoDB instance is avaialable to ALL users on the system. To enter the command line interface to
the database, you simply type mongo. The MongoDB instance can contain multiple databases. Each database will
have a name, and will contain collections of documents. To see the databases currently housed in your MongoDB
instance, try the following:

user@server/~$ mongo
MongoDB shell version: 2.4.9
connecting to: test

8 Chapter 1. Introduction to the MapReduce Model of Parallelism
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> show dbs
local 0.078125GB
> quit()

The mongo command starts the MongoDB shell, which you can use to execute commands on the database. MongoDB
automatically connects the test database (if that database does not exist, it will be created once you create a collection
and documents in it). The show dbs command shows all the databases currently housed in the MongoDB instance.
The local database is created by MongoDB and Mongo uses it for bookkeeping purposes. Each line beginning with a
> is a command prompt. The quit() command allows you to exit the MongoDB instance

Security Note!!
By default, ALL users that have access to the Linux server effectively have administrator privileges on the MongoDB
instance. There are ways to limit this, but for the purposes of class assignments, it is not really necessary. However,
you need to emphasize to students that they should create databases with names that are unique (preface the name
with your student ID number, for example) so they do not accidentally clobber each other’s databases. Also, students
should be instructed not to delete other student’s databases!!

1.5 The MongoDB Data Model

As we mentioned earlier, a MongoDB instance contains many databases. One database contains many collections. A
collection contains many documents. The document is the primary mechanism of structuring data in MongoDB.

Mongo documents are simply JSON types. JSON is a text based data representation that allows a user to define
structure in data, but does not impose structure on data. It is basically a list of labels and values:

Example of a JSON document
Lets say I want to create a document that describes a grocery store. In fact, I am trying to keep a database of grocery
stores, so each document will contain information about 1 grocery store. A simple example might be:

{
"name" : "Superman's Supermarket:,
"address" : "123 Super St.",
"NumberOfEmployees" : 20

}

Now, lets say that I want to add something a bit more complex. We need to keep track of a store’s specialty items, but
a store may have more than 1 specialty item, or none at all. The nice thing about a JSON document is that a JSON
document can be a value in a JSON document. Lets create a competitor’s store:

{
"name" : "Batman's Supermarket:,
"address" : "123 Bat Cave Rd",
"NumberOfEmployees" : 15,
"SpecialItems" : {
"Fruit" : "blueberries",
"PetFood" : "Bat Chow"

}
}

The specialItems label contains an entire sub-document. In general, any document can contain a subdocument, which
can contain a subdocument, etc. See http://json.org/ for all the details of JSON.

1.5. The MongoDB Data Model 9
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One thing to note is that a Mongo collection is defined as containing documents, meaning, any document is fine. In
the example above, both documents can be stored in the same collection, despite having different structure, different
labels, different size, etc. In fact, Mongo enforces NO constraints on the documents by default. If you create 100
documents each representing a supermarket, they are not required to share even a single label!

Concept
Because no constraints on the type, structure, or size of documents in a collection are enforced by default, it is up to
the user to know the structure of the documents they are querying (or least have the ability to find out the structure).

1.6 Loading a Data Set Into MongoDB

Section Goals

1. Gain basic skills in: loading a data set into MongoDB.

At this point, any user with access to the server on which the MongoDB instance is installed can log into
the server, and then manipulate create/delete/query data on the MongoDB instance. Lets assume a student,
Alice, is going to load some data for an assignment. For this tutorial, we have provided a data file con-
sisting of on-time-statistics for airlines in the United States. This data set is freely available from here:
http://www.transtats.bts.gov/OT_Delay/OT_DelayCause1.asp A copy of the data containing entries ranging from 1987
-2014 is provided: airlineDelay.csv (30MB file!). We have made modifications to the raw data in 3 places:
some of the entries in the raw data had blank values that were confusing the CSV file reader, so we modified those
3 lines so that the CSV file reader could read the data to load it into MongoDB. No data was added or removed, we
simply changed the number of commas on those 3 lines.

To load the data set, you first need to get the airlineDelay.csv file onto the server where MongoDB is installed.
It may be useful for the instructor to put the file in a world-readable directory on the server.

To create a database, enter the mongo shell and type: use [your DB name]. Again. . . all users have root access
to the mongo database (although not to the sever). This means you have the ability to alter/destroy any data in the
mongo system, including the data belonging to other students. Don’t be mean, don’t mess with other people’s data,
don’t waste anybody’s time. Everyone should create their own database and call it something unique; for example,
your user name. Within your own database, you can create as many collections as you like.

To load the flight data into your database, use the following command from the command line (NOT the mongo shell!!)
(replace [your DB name] with the name of your database within mongo. It will add the data to the collection called
delayData):

user@server/~$ cd example
user@server/~/example$ ls
airlineDelay.csv
user@server/~/example$
user@server/~/example$ mongoimport -d userDB -c delayData --type csv --file airlineDelay.csv --headerline
connected to: 127.0.0.1
Thu Oct 16 10:07:43.007 Progress: 7483974/30791275 24%
Thu Oct 16 10:07:43.014 42000 14000/second
Thu Oct 16 10:07:46.010 Progress: 14274866/30791275 46%
Thu Oct 16 10:07:46.010 80200 13366/second
Thu Oct 16 10:07:49.011 Progress: 21239882/30791275 68%
Thu Oct 16 10:07:49.012 119600 13288/second
Thu Oct 16 10:07:52.007 Progress: 26615020/30791275 86%
Thu Oct 16 10:07:52.007 150000 12500/second
Thu Oct 16 10:07:53.822 check 9 173658
Thu Oct 16 10:07:54.664 imported 173657 objects
user@server/~/example$ mongo

10 Chapter 1. Introduction to the MapReduce Model of Parallelism
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MongoDB shell version: 2.4.9
connecting to: test
> show dbs
local 0.078125GB
userDB 0.453125GB
> quit()

Now, you have a database called userDB containing 173,657 documents taking up 0.078GB of space. This is not
exactly huge data, but its big enough to practice with. Also, this is a real data set that you can use to learn about the
real world!

Warning: Don’t Be Mean!!
Remember, every user should create a unique name for their database, and NOT interfere with anyone else’s
database. One positive note is that if the MongoDB instance gets mangled, its very easy to delete the whole thing,
re-install, and reload the data as we just did.

1.7 Basic MongoDB Queries to Explore Your Data Set

Section Goals

1. Gain basic skills in: using the command line interface for MongoDB and performing basic queries to explore
aspects of that data set.

Each entry in the airline delay database represents the aggregate monthly data for a particular airline at a particular
airport. For example, one entry might be the delay information for Southwest Airlines at St Louis Airport during
December 2013.

Each entry lists the number of flights, the number of flights delayed (15 minutes beyond the scheduled arrival time),
the number of flights canceled and diverted, the minutes of delay due to carrier delay - weather delay - national air
system delays - security delay. The _ct fields list the count of flights experiencing each delay (they add up the arr_del15
column). Because a flight can have multiple delay types, these numbers are real numbers. For example, if a flight was
30 minutes late, 15 minutes due to weather and 15 minutes due to security it will contribute .5 to weather_ct and .5 to
security_ct. It will also contribute 15 to the weather_delay field and 15 to the security_delay field.

Finally, the arr_delay column is the sum of total delay minutes for the document (that is . . . arr_delay = carrier_delay+
weather_delay + nas_delay + security_delay + late_aircraft_delay)

The names of each field in an entry:

1.7. Basic MongoDB Queries to Explore Your Data Set 11
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Label/field
name

Meaning

year The year the month occurred
month The month for which data was collected
carrier The airline code
carrier_name The airline name
airport The airport code
airport_name The airport name
arr_flights # of flights that arrived at the airport
arr_del15 # of flights that arrived >= 15 minutes late
carrier_ct # of flights delayed due to the carrier
weather_ct # of flights delayed due to weather
nas_ct # of flights delayed due to national air system
security_ct # of flights delayed due to security
late_aircraft_ct # flights delayed because a previous flight using the same aircraft was late
arr_cancelled # of canceled arrivals
arr_diverted # of scheduled arrivals that were diverted
arr_delay Sum of the delay minutes
carrier_delay Total minutes of delays due to carriers
weather_delay Total minutes of delays due to weather
nas_delay Total minutes of delays due to natl. air service
security_delay Total minutes of delays due to security
late_aircraft_delay Similar to late_aircraft_ct. The total minutes of delay due to a previous flight using the same

aircraft arriving late.

The JSON document structure for an individual document is shown by looking at a single imported document (1 row
from the database). The following shell sequence shows how to use a command to see 1 document in a collection.
Always remember to first switch to the database you want to use, then explore the collections. In this example, the
database is named airline and the collection is delays:

user@server/~/example$ mongo
MongoDB shell version: 2.4.9
connecting to: test
> use airline
switched to db airline
> show collections
delays
system.indexes
> db.delays.findOne()
{

"_id" : ObjectId("526ea45fe49ef3624c73e94f"),
"year" : 2003,
" month" : 6,
"carrier" : "AA",
"carrier_name" : "American Airlines Inc.",
"airport" : "ABQ",
"airport_name" : "Albuquerque, NM: Albuquerque International Sunport",
"arr_flights" : 307,
"arr_del15" : 56,
"carrier_ct" : 14.68,
"weather_ct" : 10.79,
"nas_ct" : 19.09,
"security_ct" : 1.48,
"late_aircraft_ct" : 9.96,
"arr_cancelled" : 1,
"arr_diverted" : 1,
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"arr_delay" : 2530,
"carrier_delay" : 510,
"weather_delay" : 621,
"nas_delay" : 676,
"security_delay" : 25,
"late_aircraft_delay" : 698,
"" : ""

}
>

View documents in a collection
Assume a collection named delays in a selected database.

To view a single document in a collection, use:

> db.delays.findOne()

To view multiple documents in a collection, use:

> db.delays.find()

1.8 Constructing MapReduce Queries on Your Data Set

Section Goals

1. Be able to construct and execute a mapReduce program on MongoDB

2. Be able to perform queries to explore the result of a mapReduce query.

MongoDB provides a mapReduce client to execute queries across a database. If we only have a 1 node instance, then
clearly there will be no parallelism across machines; however, recall that the nice thing about the mapReduce model
and its associated distributed file systems is that we can easily add more machines to achieve more parallelism, and
not have to change our queries at all to take advantage of it!

Mongo uses javascript to represent mapReduce queries. This is nice because javascript is generally easy to use, and
provides just about everything you need as built in functions/libraries/types. It is also rather readable. If you have
never used javascript, you will see that in the following examples that it will be somewhat intuitive for our uses.

The general prototype of a mapReduce operation in Mongo is the define a mapper function and reducer function, then
use the mapReduce client (implemented as a Mongo function) to execute the query using the specified functions. For
example:

Mongo mapReduce Prototype
The following code creates a mapper function named mapper1 and a reducer function named reducer1. The result
of the mapReduce operation will be a mongo collection named OUTPUT_COLLECTION_NAME.

var mapper1 = function() {
YOUR CODE HERE
emit( "SOMEKEY", SOMEVALUE );

};
var reducer1 = function( keyval, areasArray ) {

YOUR CODE HERE
return ( SOMEVALUE );

};
db.test.mapReduce( mapper1, reducer1,{out:"OUTPUT_COLLECTION_NAME"} )
db.OUTPUT_COLLECTION_NAME.find()
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Note that the reducer does not explicitly return a key value. The key value passed to the reducer will automatically be
associated with the value returned from the reducer by the mapReduce client.

Lets take a look at an actual query over the airline statistics data set. We will begin with a basic query that finds
the airport in the united states that has had the most number of diversions throughout the entire data set. For each
document in our collection, we will be concerned with 2 pieces of data:

1. The name of the airport: airport_name

2. The number of flights diverted from that airport: arr_diverted

Remember, that each document contains the data for a particular airline at a particular airport during a particular
month. So, for the St. Louis Airport during January 2014, there will be a document containing statistics for Southwest
Airlines, another document for Delta Airlines, another document for United Airlines, etc.

In order to construct the result for our query, we basically need to construct a collection containing a single JSON
document for every airport in our data set. The document needs to contain the name of the airport, and the number of
flights diverted from that airport. So, we need to transform the set of documents in our database into the desired set
of documents containing the answer. All the data is in the database, it is just not is in a format in which the answer is
readily available. We will use a mapReduce job to make this transformation.

Example: Find the airport with most number of diversions.
1. A document contains data for 1 airline at 1 airport during 1 month. We need to extract the data we need from

each document. The mapper will do this:

var m1 = function(){
emit( this.airport_name, this.arr_diverted );

};

NOTE the this keyword. A mapper is applied to every document in the data set. The this keyword allows us to
access data from the document. this.airport_name retrieves the airport name from the document.

Recall that when we emit a value, the mapReduce client will automatically group all values with a matching key
together into a list. So, the end of the mapper stage will result in a list of keys; each key will be associated with a list
of values that were emitted with that key. For example, if there were 3 documents in the database indicating that STL
had 3 diversions in January, STL had 2 diversion in February, and HOU had 7 diversion in January. In short, assume
the following JSON documents in the delayData collection:

{
"airport_name" : "STL",
"year" : "2012",
"Month" : "January",
"arr_diverted" : "3"

}

{ "airport_name" : "STL",
"year" : 2012,
"Month" : "February",
"arr_diverted" : 2

}

{ "airport_name" : "HOU",
"year" : 2012,
"Month" : "January",
"arr_diverted" : 7

}

Then, at the end of the emit stage the mapReduce client would construct the following lists:
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Key Value List
STL [3,2]
HOU [7]

The job of the reducer is now to reduce those lists into a meaningful result. Conceptually, a reducer will be run for
each key. In practice, this is not necessarily true, as the system can take advantage of parallelism to schedule a more
efficient execution plan (See the reducer example in Python up at the beginning). So, in concept, a reducer simply
reduces all the values for a particular key into a single, meaningful, value. Remember, we want the total number of
diversions for our airports.

The following reducer will sum up all the values in the list associated with a key. It will then return the sum. Notice
the function Array.sum(); this is provided by javascript. You can always explicitly write a loop to compute the
sum.

NOTE: the reducer does not explicitly emit a key,value pair. In Mongo, whatever value is in the return statement
will be associated with the key passed into the function.

var r1 = function( key, valArr ) {
return Array.sum( valArr );

}

Once the reducer is run, we should end up with the following keys and values:

Key Value List
STL [5]
HOU [7]

Finally, we have defined the map and reduce functions. Now we must actually execute them. To begin a mapReduce
client with the above mapper and reducer, we use the following code.

db.delayData.mapReduce( m1, r1, {out:'tmp'});

The {out:’tmp’} simply means that the collection containing the result of our query will be named tmp.

The last step is to look at the result. Remember, we wanted to find the airport with the most diversions, but our query
just returned the number of diversions from ALL airports. The easiest way to find our answer at this point is to just sort
the results. Mongo uses the find() function to return documents in a collection. Mongo also provides a sort()
function to sort the documents in a collection. The following lien will sort the documents in the tmp collection in
descending order and print them to the screen.

db.tmp.find().sort( {value:-1} )

All together, you can copy and paste the following code into the Mongo shell to execute the operations and view the
results. Remember, this code assumes the data is in a collection called delayData. Replace delayData with
whatever collection your data is in:

var m1 = function(){
emit( this.airport_name, this.arr_diverted );

};

var r1 = function( key, valArr ) {
return Array.sum( valArr );

}

db.delayData.mapReduce( m1, r1, {out:'tmp'});
db.tmp.find().sort( {value:-1} )

A script of the execution is shown below. Note that because we don’t want to make anyone angry at our tutorial, we
will show the airports with the LEAST number of diversions. Generally, this means the airports are either:

1. Not receiving many commercial flights.
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2. Small (and don’t get a lot of flights).

3. So remote that aircraft cannot divert because there is no place to divert to (the scarier option).

4. Do not report data for some reason.

user@server/~/example$ mongo
MongoDB shell version: 2.4.9
connecting to: test
> show dbs
local 0.078125GB
userDB 0.453125GB
> use userDB
switched to db userDB
> show collections
delayData
system.indexes
> var m1 = function(){
... emit( this.airport_name, this.arr_diverted );
... };
>
> var r1 = function( key, valArr ) {
... return Array.sum( valArr );
... }
>
> db.delayData.mapReduce( m1, r1, {out:'tmp'});
{

"result" : "tmp",
"timeMillis" : 4565,
"counts" : {
"input" : 173657,
"emit" : 173657,
"reduce" : 16838,
"output" : 363

},
"ok" : 1,

}
> show collections
delayData
system.indexes
tmp
> db.tmp.find().sort( {value:1} )
{ "_id" : "Clarksburg/Fairmont, WV: North Central West Virginia", "value" : 0 }
{ "_id" : "Columbus, MS: Columbus AFB", "value" : 0 }
{ "_id" : "Dickinson, ND: Dickinson - Theodore Roosevelt Regional", "value" : 0 }
{ "_id" : "Greenville, MS: Mid Delta Regional", "value" : 0 }
{ "_id" : "Guam, TT: Guam International", "value" : 0 }
{ "_id" : "Gustavus, AK: Gustavus Airport", "value" : 0 }
{ "_id" : "Iron Mountain/Kingsfd, MI: Ford", "value" : 0 }
{ "_id" : "Kansas City, MO: Charles B. Wheeler Downtown", "value" : 0 }
{ "_id" : "Moses Lake, WA: Grant County International", "value" : 0 }
{ "_id" : "Pago Pago, TT: Pago Pago International", "value" : 0 }
{ "_id" : "Palmdale, CA: Palmdale USAF Plant 42", "value" : 0 }
{ "_id" : "Phoenix, AZ: Phoenix - Mesa Gateway", "value" : 0 }
{ "_id" : "Saipan, TT: Francisco C. Ada Saipan International", "value" : 0 }
{ "_id" : "Salem, OR: McNary Field", "value" : 0 }
{ "_id" : "Staunton, VA: Shenandoah Valley Regional", "value" : 0 }
{ "_id" : "Visalia, CA: Visalia Municipal", "value" : 0 }
{ "_id" : "Yakima, WA: Yakima Air Terminal/McAllister Field", "value" : 0 }
{ "_id" : "Del Rio, TX: Del Rio International", "value" : 1 }
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{ "_id" : "Houston, TX: Ellington", "value" : 1 }
{ "_id" : "North Platte, NE: North Platte Regional Airport Lee Bird Field", "value" : 1 }
Type "it" for more
>

That was a long example, but it hits all the high points.

The next example emphasizes the fact that not documents must emit a value. For example, if we only want to find
the number of diversions occurring at airports in 2012, we must only emit values from documents indicating that they
have data for 2012. The following code changes the previous example slightly to accomplish this:

var m1 = function(){
if( this.year == 2012) {
emit( this.airport_name, this.arr_diverted );

}
};

var r1 = function( key, valArr ) {
return Array.sum( valArr );

}

db.delayData.mapReduce( m1, r1, {out:'tmp'});
db.tmp.find().sort( {value:-1} )

Finally, part of the power of mapReduce is that the key does not have to be a basic data type. In the Mongo system, this
means that they key can be a JSON document. In generel, in other systems implementing a mapReduce framework,
this means the key can be almost any complex grouping of data items.

For example, if we want to find the number of flight diversions that occur in St Louis, but we want to group them
according to year, then we must construct our key to include the airport name and the year. Furthermore, we only emit
such a key if the airport name is STL. The following example does this.

Example: Document as a Key:
Assume the following JSON documents in the delayData collection:

{ "airport_name" : "STL",
"year" : 2012,
"arr_diverted": 3

}

{ "airport_name" : "STL",
"year" : 2012,
"arr_diverted": 5

}

{ "airport_name" : "STL",
"year" : 2011,
"arr_diverted": 7

}

{ "airport_name" : "HOU",
"year" : 2012,
"arr_diverted": 7

}

The mapper must construct a key for each input document consisting of a JSON document that contains the airport
name and year:
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var m1 = function(){
var rval = { airport: this.airport_name,

year: this.year };
if( this.airport=="STL") {
emit( rval, this.arr_diverted );

}
};

var r1 = function( key, valArr ) {
return Array.sum( valArr );

}

db.delayData.mapReduce( m1, r1, {out:'tmp'});
db.tmp.find().sort( {'_id.year':-1} )

The mapper will return process each document, emitting keys and values. The mapReduce client will then construct
the following lists associated with keys:

Key Value list
{“airport”:”STL”, “year”:2012} [3,5]
{“airport”:”STL”, “year”:2011} [7]

Finally, the reducer will sum the lists it is given and return the results to the tmp collection.

1.9 Exercises

1. Query1: Find the total amount of delay minutes in the database (1 number).

2. Query2: Find the total amount of delay minutes grouped by airline.

3. Query3: Find the airport with the most canceled flights (this may require 2 map reduces, one to group the
airports by their canceled flights, and another to find the airport with the most).

4. Query 4: Find the airport with the most canceled flights in 2012.

5. Query 5: Find, for each airline, the airport at which they have the most number of delays (use the arr_del15
column).

6. Query 6: Find the average delay time for the airport with the most flights in the database.

7. Query 7: For each airline, find the delay category that makes up the smallest amount of time of their delays, and
then find the airport for which they have the most minutes of that delay category.

Hint for Query 7: One way to answer this will require 3 separate sets of map/reduce functions, 1 of those sets will get
called in a loop:

step 1. get the correct category of delay for each airline

step 2. get the airline, airport, and sum of delays of the correct category for each airline/airport combo. This is where
you probably need to execute map/reduces in a loop, once for each airline. Check out the ‘scope’ parameter to the
db.mapReduce() function

step 3. find the airline/airport combo with the max number of delay minutes

1.10 Quick MongoDB Command Cheat Sheet

projection: ( the second argument ) >db.delays.find({},{weather_delay:1})
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count docs in a collection: >db.runCommand({count:’delays’})

create database: > use mydb

drop database > use mydb; > db.dropDatabase();

list databases: > show dbs

drop collection: > db.collection.drop()

list a documents: > db.plots.findOne()

list all documents: > db.plots.find()

find price equal: > db.plots.findOne({price: 729})

find price greater than > db.plots.findOne({price: {$gt:729, $lt: 800}})
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CHAPTER

TWO

REVIEW OF MULTITHREADED PROGRAMMING

2.1 Sum3 Problem Overview

2.1.1 Basic Description

The Sum3 problem is described by a rather simple question: Given a set of 𝑛 integers, how many triples of distinct
elements in that list add up to 0.

For example, given the following list:

-1, -2, 0, 2, 3

the answer is 2:

-1 + -2 + 3 = 0
-2 + 0 + 2 = 0

The simplest way to code a solution to the Sum3 problem is to use a double nested looping structure to generate the
indices of all possible triples in the input array. Clearly, this is simple to express in code, but has an unfortunate time
complexity of 𝑂(𝑛3). For example, the following C++ code uses 3 for loops to achieve a correct solution.

1 #include <iostream>
2 using namespace std;
3

4 int main( )
5 {
6 int dataSize = 5;
7 int* data = new int[ dataSize ];
8 data[0] = -1;
9 data[1] = -2;

10 data[2] = 0;
11 data[3] = 2;
12 data[4] = 3;
13 // do the naive Sum3 computation. O(n^3)
14 int count = 0;
15 for (int i = 0; i < dataSize-2; i++)
16 for (int j = i+1; j < dataSize-1; j++)
17 for (int k = j+1; k < dataSize; k++)
18 if (data[i] + data[j] + data[k] == 0)
19 count++;
20

21 cout<< count <<endl;
22

23 }
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2.1.2 Complete Naive Solution

The next code block uses the same solution as above, but includes a command line parameter that will generate an
array of random numbers of a user-specified size. The getRandInt() function loads the vector passed into it with
random integers. The data vector allocates space for the number of integers required, and is then passed to the
getRandInt() function. This version of the program allows the user to get a feel for how and 𝑂(𝑛3) program
behaves in practice. Try compiling the program and running it.

1 #include <iostream>
2 #include <sstream>
3

4 using namespace std;
5

6 int getRandInt( int* dataVec, int dataSize )
7 {
8 // load up a vector with random integers
9 int num;

10 for( int i = 0; i < dataSize; i++ ) {
11 // integers will be 1-100
12 num = rand() % 100 +1;
13 if( rand( ) % 2 == 0 ) {
14 // make some integers negative
15 num *= -1;
16 }
17 dataVec[i] = num;
18 }
19 }
20

21

22 int main(int argc, char * argv[] )
23 {
24 int dataSize = 0;
25

26 if( argc < 2 ) {
27 std::cerr << "usage: exe [num of nums] [optional seed value]" << std::endl;
28 exit( -1 );
29 }
30 {
31 std::stringstream ss1;
32 ss1 << argv[1];
33 ss1 >> dataSize;
34 }
35 if( argc >= 3 ) {
36 std::stringstream ss1;
37 int seed;
38 ss1 << argv[2];
39 ss1 >> seed;
40 srand( seed );
41 }
42 else {
43 srand( 0 );
44 }
45

46 // create a data vector
47 int* data = new int[ dataSize ];
48

49 // load it up with random data
50 getRandInt( data, dataSize );
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51 int *dataPtr = &data[0];
52 // do the naive Sum3 computation. O(n^3)
53 int count = 0;
54 for (int i = 0; i < dataSize-2; i++)
55 for (int j = i+1; j < dataSize-1; j++)
56 for (int k = j+1; k < dataSize; k++)
57 if (dataPtr[i] + dataPtr[j] + dataPtr[k] == 0){
58 count++;
59 }
60 cout<< count <<endl;
61 }

Here are some running times for the previous program:

Array Size Time (s)
500 .106
1000 .804
1500 2.698
2000 6.382
2500 12.459
3000 21.519
3500 34.162

The running times are plotted. The cubic nature of the curve is clearly visible.
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Exercise
Create a Makefile and use the Makefile to compile the program listed above. Run the program using the time
command on linux to see some running times. Collect running times on two different machines. Write a brief report
indicating your results and listing the machine specifications. List reasons why one machine is faster than the other.

To find out machine specs on linux, check out the lspci abd lscpu commands, and check out the /proc filesystem.
Check the man pages and/or google for information on how to use/interpret these resources
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2.2 Sum3 Simple Implementation (Serial)

For an input array of arbitrary integers (that is, we make no assumptions as to the range of the integers), Sum3 can be
solved in 𝑂(𝑛2) time using relatively simple algorithms.

The purpose of this chapter is to emphasize the point that parallelism is not always the best solution to a problem.
Sometimes, making algorithmic improvements (resulting in better theoretical complexity) can provide better speedups
than parallelism; especially if you don’t have the hardware resources to take advantage of a parallel algorithm.

2.2.1 Using a Hash Table

The easiest approach to code is to take advantage of hash tables. Hash tables are implemented in many languages,
so they are cheap from a coding perspective, and they offer 𝑂(1) time for inserting an element and determining if an
element is in the hash table ... under ideal circumstances. The approach is to:

1. Load all numbers in a hash table

2. Generate all possible pairs of numbers

3. Check if the negation of the sum of each pair of numbers is in the hash table.

However, this approach suffers from some drawbacks. First, hash table operations can degrade to linear time under
certain conditions (although this can be managed rather easily). Second, care must be taken to ensure that unique
triples are identified. For example, if the input array was -2, 0, 4, one must ensure that -2+-2+4 = 0 does not
get counted as a valid triple (since -2 only appears once in the input).

2.2.2 Using a Sorted Input Array

A slightly more complicated 𝑂(𝑛2) algorithm requires that the input array be sorted. The algorithm contains a loop
that will traverse the input array from first to last.

Assume a sorted input array array containing n elements. We will first find all triples that add up to 0 and involve the
first element in array. We set a=array[0]. A triple is then formed with b=array[0+1] and c=array[n-1].
If a+b+c > 0, then we need to reduce the sum to get it closer to 0, so we set c=array[n-2] (decrease the largest
number in the triple to get a smaller sum). If a+b+c < 0, then we need to increase the sum to get it closer to 0, so
we set b=array[0+2] (increase the smaller number to get a larger sum). This process continues until b and c refer
to the same array element. At the end of this process, all possible triples involving the first array element have been
computed.

To compute all triples involving the first array element, we took a pair of numbers from the array. After examining the
pair, one number was excluded from further consideration in future triples involving the first array element. Therefore,
for n array elements, we will construct n-2 triples due to the following: the first array element is used in every
triple, leaving us to create pairs of the remaining n-1 elements; the first pair uses two elements and eliminates one
from further consideration; all following pairs will reuse 1 element form the previous pair, and eliminate one element
from consideration. Thus, computing all triples involving a single element requires 𝑂(𝑛) time. Repeating this for n
elements in the input array requires 𝑂(𝑛2) time. A C++ implementation of this algorithm follows:

1 #include <iostream>
2 #include <sstream>
3

4 using namespace std;
5 int getRandInt( int *dataVec, int dataSize )
6 {
7 // load up a vector with random integers
8 int num;
9 for( int i = 0; i < dataSize; i++ ) {
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10 // integers will be 1-100
11 num = rand() % 100+1;
12 if( rand( ) % 2 == 0 ) {
13 // make some integers negative
14 num *= -1;
15 }
16 dataVec[i] = num;
17 }
18 }
19

20

21 int main(int argc, char * argv[] )
22 {
23 int dataSize = 0;
24

25 if( argc < 2 ) {
26 std::cerr << "usage: exe [num of nums] [optional seed value]" << std::endl;
27 exit( -1 );
28 }
29 {
30 std::stringstream ss1;
31 ss1 << argv[1];
32 ss1 >> dataSize;
33 }
34 if( argc >= 3 ) {
35 std::stringstream ss1;
36 int seed;
37 ss1 << argv[2];
38 ss1 >> seed;
39 srand( seed );
40 }
41 else {
42 srand( 0 );
43 }
44

45 // create a data vector
46 int *data = new int[ dataSize ];
47

48 // load it up with random data
49 getRandInt( data, dataSize );
50 // sort the data
51 sort( data, data + dataSize );
52

53 // do the Sum3 computation. O(n^2)
54 int count = 0;
55 int a,b,c, sum; // array elements
56 int j,k; // array indices
57 for (int i = 0; i < dataSize-2; i++){
58 a = data[i];
59 j = i+1;
60 k = dataSize-1;
61 while( j < k ) {
62 b = data[j];
63 c = data[k];
64 sum = a+b+c;
65 if( sum == 0 ){
66 cerr << a << " " << b << " " << c << endl;
67
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68 count++;
69 }
70 if( sum < 0 ){
71 j++;
72 }
73 else {
74 k--;
75 }
76 }
77 }
78 cout<< count <<endl;

}

One pitfall in this algorithm is that duplicate values cause problems.

Example
Consider the input string array = [-4, 1, 1, 3, 3]. There are 4 triples that sum to 0:

array[0] + array[1] + array[3] = 0

array[0] + array[1] + array[4] = 0

array[0] + array[2] + array[3] = 0

array[0] + array[2] + array[4] = 0

However, the above code will only find 2 triples. The algorithm progresses as follows, with items being examined in
bold:

-4, 1, 1, 3, 3 sum = 0, so index k is decremented
-4, 1, 1, 3, 3 sum = 0, so index k is decremented
-4, 1, 1, 3, 3 sum = -2, so index i is incremented, resulting in j == k and the while loop exits

Effectively, the algorithm only finds triples involving the first 1, and none involving the second 1.

In fact, duplicates cause 3 problems that must be addressed:

1. 3 or more 0s will independently sum to 0. In fact, for n > 2 0s, there will be n choose 3 triples that sum
to 0.

2. A sequence of repeating numbers exists such that a pair of those numbers along with a third forms a triple that
sums to 0. For example: ‘‘ -4, 1, 2, 2, 2‘‘ contains 3 triples that sum to 0. When such a sequence is detected
with length n > 2, there will be n choose 2 triples that sum to 0. Note that a correct handling of this case
can also handle the case where 3 or more 0s exist.

3. The situation in the above example when two sequences of repeating numbers exist such that the repeated
element of each sequence along with a third number not equal to those elements sum to 0. For sequences of
non-equal numbers x and y with respective lengths m >= 1 and n >= 1, such that there exists a number z |
x+y+z = 0, there will be x*y triples that sum to 0 for each individual copy of z.

The following program handles duplicates correctly. Problem 1 and Problem 2 are handled in a single conditional,
the first if statement in the while loop. Note that when such a situation occurs, we have effectively found the point
at which j and k converge, and so we break out of the while loop. Problem 3 is handled in the second if statement in
the while loop; the modification of j and k are again handled specially in this situation (since they may be increased
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or decreased by more than 1). The third if statement in the while loop handles the situation in which duplicates
do not occur. The final else block in the while loop handles the normal increment of j or decrement of k when a
triple with a non-zero sum is visited. The complete solution for handling duplicates is:

1 #include <iostream>
2 #include <sstream>
3

4 using namespace std;
5 int getRandInt( int *dataVec, int dataSize )
6 {
7 // load up a vector with random integers
8 int num;
9 for( int i = 0; i < dataSize; i++ ) {

10 // integers will be 1-100
11 num = rand() % 100 +1;
12 if( rand( ) % 2 == 0 ) {
13 // make some integers negative
14 num *= -1;
15 }
16 dataVec[i] = num;
17 }
18 }
19

20

21 int main(int argc, char * argv[] )
22 {
23 int dataSize = 0;
24

25 if( argc < 2 ) {
26 std::cerr << "usage: exe [num of nums] [optional seed value]" << std::endl;
27 exit( -1 );
28 }
29 {
30 std::stringstream ss1;
31 ss1 << argv[1];
32 ss1 >> dataSize;
33 }
34 if( argc >= 3 ) {
35 std::stringstream ss1;
36 int seed;
37 ss1 << argv[2];
38 ss1 >> seed;
39 srand( seed );
40 }
41 else {
42 srand( 0 );
43 }
44

45 // create a data vector
46 int *data = new int[ dataSize ];
47

48 // load it up with random data
49 getRandInt( data, dataSize );
50 // sort the data
51 sort( data, data + dataSize );
52

53 // do the Sum3 computation. O(n^2)
54 int count = 0;
55 int a,b,c, sum; // array elements
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56 int j,k; // array indices
57 for (int i = 0; i < dataSize-2; i++){
58 a = data[i];
59 j = i+1;
60 k = dataSize-1;
61 while( j < k ) {
62 b = data[j];
63 c = data[k];
64 sum = a+b+c;
65 if( sum == 0 && b == c ) {
66 // case where b == c. ie, -10 + 5 + 5
67 // or where a == b == c == 0
68 int num = k-j+1;
69 count += (num*(num-1))/2;
70 break;
71 }
72 else if( sum == 0 && (data[j+1] == b || data[k-1] == c )){
73 // case where there are multiple copies of b or c
74 // find out how many b's and c's there are
75 int startj = j;
76 while( data[j+1] == b ) j++;
77 int startk = k;
78 while( data[k-1] == c ) k--;
79 count += (j-startj+1) * (startk-k+1);
80 j++;
81 k--;
82 }
83 else if( sum == 0 ){
84 // normal case
85 count++;
86 j++;
87 } else {
88 // if sum is not 0, increment j or k
89 if( sum < 0 ) j++;
90 else k--;
91 }
92 }
93 }
94 cout<< count <<endl;
95 }

Here are some running times for the previous program:

Array Size Time (s)
500 .005
1000 .008
1500 .013
2000 .019
2500 .026
3000 .033
3500 .043
4000 .054
10000 .299
20000 1.142

Here we show the graph of running times for the cubic and quadratic versions of the algorithm. Notice the vast
difference in running times for the two programs. Again, the cubic and quadratic nature of the algorithms are visible.
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Exercise
Create a Makefile and use the Makefile to compile the program listed above. Run the program using the time
command on linux to see some running times. Collect running times on two different machines. Write a brief report
indicating your results and listing the machine specifications. List reasons why one machine is faster than the other.

To find out machine specs on linux, check out the lspci abd lscpu commands, and check out the /proc filesystem.
Check the man pages and/or google for information on how to use/interpret these resources

2.3 Sum3 Parallel Implementation with Pthreads and OpenMP

At this point we have seen two possible algorithms and implementations for the Sum3 problem

1. A 𝑂(𝑛3) algorithm that is extremely easy to implement, but that suffers from poor execution time.

2. A 𝑂(𝑛2) algorithm that is much faster in terms of execution time, but that requires care to handle sequences of
repeating values correctly.

The question now whether or not we can do better. It turns out that algorithmically, we cannot...at least not yet; there
are currently no known algorithms to solve the Sum3 problem faster than 𝑂𝑛2 time. In fact, a class of problems
exists called Sum3 hard problems [GOM1995CG]. Any problem that is constant time reducible to a Sum3 problem is
Sum3-hard; the implication being that a sub-quadratic time solution to any problem in the Sum3-hard class provides a
sub-quadratic time solution to Sum3.

2.3.1 Introducing Parallelism with Multiple Threads

In terms of running time, we can do better with the Sum3 problem. One way to improve running time is to utilize a
multi-core CPU with a multi-threaded program. The general approach is to divide the work that must be completed
among multiple cores. Ideally, if we evenly divide the work among two processors, the program should run twice
as fast. Another way to express this is to say that the program should have a 2x speedup over the serial version.
The concept of speedup is a useful measure to gauge the effectiveness of a particular optimization, and is defined as
follows:

Definition

2.3. Sum3 Parallel Implementation with Pthreads and OpenMP 29



CyberGIS Education Modules, Release 1.1.1

Let 𝑡𝑜𝑙𝑑 be the running time of a program and 𝑡𝑛𝑒𝑤 be the running time of the same program that has been optimized.
The speedup of the new program is equal to the running time of the old program divided by the running time of the
new program:

speedup = 𝑡𝑜𝑙𝑑/𝑡𝑛𝑒𝑤

Design of a Multi-Threaded Algorithm

Designing a multi-threaded program, or a parallel algorithm for that matter, requires a different thought process than
defining a serial program. When defining a serial algorithm, the focus is usually to determine the steps that must be
completed in succession to achieve an answer. When developing a multi-threaded program, one must think in terms of
how the work can be divided among threads. It is sometimes useful to begin with a serial program and try to modify
it to divide work, and other times it is easier to simply start from scratch.

Concept
How should the work be divided among threads?

In order to effectively parallelize work, each thread must be able to do a portion of the work. Ideally, each thread will
take roughly the same amount of time to execute; it is generally undesirable for a bunch of threads to complete their
work quickly and sit around waiting on a single, slow thread to finish.

Lets take the cubic version of the Sum3 algorithm as an example (the core of the program is listed below). The main
work of the program consists of the double nested loops that generate all possible triples of numbers from the input
array. A reasonable method of dividing the work is to make 2 threads such that each thread generates roughly half of
the triples that must be tested. We can achieve this by modifying the outer loop such that one thread will only compute
triples in which the first number in the triple comes from the first half the array, and the second thread will compute
triples in which the first number comes from the second half of the array. Such a modification requires minor changes
to the core of the program.

1 #include <iostream>
2 using namespace std;
3

4 int main( )
5 {
6 int dataSize = 5;
7 int* data = new int[ dataSize ];
8 data[0] = -1;
9 data[1] = -2;

10 data[2] = 0;
11 data[3] = 2;
12 data[4] = 3;
13 // do the naive Sum3 computation. O(n^3)
14 int count = 0;
15 for (int i = 0; i < dataSize-2; i++)
16 for (int j = i+1; j < dataSize-1; j++)
17 for (int k = j+1; k < dataSize; k++)
18 if (data[i] + data[j] + data[k] == 0)
19 count++;
20

21 cout<< count <<endl;
22

23 }
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Cubic Sum3 Using Pthreads

Pthreads are a low level threading mechanism that have been around for a long time. Pthreads are provided by a C
library, and such, they do things in a very old-school, C way of thinking. The basic idea that the programmer defines
a function, and then tells the pthread library to create a thread to run that function. Therefore, we have a concept
of a master thread, which is the thread of the program that is started when the program is initially executed, and the
concept of worker threads, which are spawned by the master thread. Typically, the master thread will spawn some
worker threads, and then wait for them to complete before moving on, as illustrated in the following:

Worker Thread 1

Master Thread:

...

do some work

spawn some threads

Worker Thread 2

Worker Thread n

...

Wait for threads to finish (optional)
do some more work

Program:

...

In order to achieve a pthread version of the program, we must first put the code that each thread will execute into a
function. We will then call a pthread library call and tell it to use that function as the code the thread will run. The
pthread library will then launch the thread. Our master thread can then launch additional threads, do other work, or
wait on the launched threads to finish executing. Here are the function calls we will use... you should check your
system’s man pages for the most up to date information.

Pthread Library Calls
int
pthread_create(pthread_t *restrict thread, const pthread_attr_t *restrict attr,
void *(*start_routine)(void *), void *restrict arg);

Create a thread. The first argument will be assigned a pointer to a thread handle that is created. The second argument
is a pointer to a thread attributes struct that can define attributes of the thread, we will simply pass a NULL to use
defaults. The third argument is the function pointer to the function that this thread will execute. The final pointer is a
pointer to a single argument that will be passed to the function. Note, to use the argument, the function must type cast
it to the appropriate type. Also, if more than 1 arguments are required, you must pack them into a struct. Returns a

Returns a 0 on success, a non-zero error code on failure

int
pthread_join(pthread_t thread, void **value_ptr);

Join a thread. The join command will cause the calling thread to wait until the thread identified by the thread handle
in the first argument terminates. We will pass NULL as the second argument

Returns a 0 in success, a non–zero error code on failure
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Now that we have the ability to create and join threads, we can create a simple pthread program. The following
example shows how to create threads to do some work, and pass arguments to them. Remember that pthreads require
the function that will be executed as a thread to take a single argument; so we must wrap all the arguments we want to
pass to the function into a single struct. We define the struct on line 23, and instantiate two instances of the struct on
line 87. Because a pointer to the struct is passed to our partial3SumThread function as a void *, we must cast
the pointer back to the correct type on line 33 before we can use it in the function.

We want to pass the input array to each thread, so we can simply pass it to the function.

Note
The function launched as a thread by the pthread library must take a single argument of type void pointer. This
argument must be type-cast to a void to pass it into the function, and type-cast back to its original type within the
function. Of course, this breaks type checking for the compiler, so be careful and double check the types yourself!

Here is the code:

1 #include <iostream>
2 #include <sstream>
3

4 using namespace std;
5

6 int getRandInt( int *dataVec, int dataSize )
7 {
8 // load up a vector with random integers
9 int num;

10 for( int i = 0; i < dataSize; i++ ) {
11 // integers will be 1-100
12 num = rand() % 100 +1;
13 if( rand( ) % 2 == 0 ) {
14 // make some integers negative
15 num *= -1;
16 }
17 dataVec[i] = num;
18 }
19 }
20

21 // define a struct to pass information to the threads
22 struct threadInfo{
23 int myID;
24 int *dataPtr;
25 int dataSize;
26 int count;
27 };
28

29

30 void* partial3SumThread( void* arg ) {
31 // type cast the argument back to a struct
32 threadInfo * myInfo = static_cast<threadInfo*>( arg );
33

34

35 // each thread only works on half the array in the outer loop
36 // compute the bounds based on the ID we assigned each thread.
37 // remember, we only have 2 threads in this case, so we will hard code a 2
38 int start = ((myInfo->dataSize / 2) * myInfo->myID );
39 int stop = ((myInfo->dataSize / 2)* (myInfo->myID+1));
40 if( myInfo->myID == 1 )
41 stop =myInfo->dataSize-2;
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42

43 // do the naive Sum3 computation. O(n^3)
44 for (int i = start; i < stop; i++)
45 for (int j = i+1; j < myInfo->dataSize-1; j++)
46 for (int k = j+1; k < myInfo->dataSize; k++)
47 if (myInfo->dataPtr[i] + myInfo->dataPtr[j] + myInfo->dataPtr[k] == 0){
48 myInfo->count++;
49 }
50 }
51

52 int main(int argc, char * argv[] )
53 {
54 int dataSize = 0;
55

56 if( argc < 2 ) {
57 std::cerr << "usage: exe [num of nums] [optional seed value]" << std::endl;
58 exit( -1 );
59 }
60 {
61 std::stringstream ss1;
62 ss1 << argv[1];
63 ss1 >> dataSize;
64 }
65 if( argc >= 3 ) {
66 std::stringstream ss1;
67 int seed;
68 ss1 << argv[2];
69 ss1 >> seed;
70 srand( seed );
71 }
72 else {
73 srand( 0 );
74 }
75

76 // create a data vector
77 int *data = new int[ dataSize ];
78

79 // load it up with random data
80 getRandInt( data, dataSize );
81

82 // allocate thread handles
83 pthread_t worker1tid, worker2tid;
84

85 // allocate and set up structs for 2 threads
86 threadInfo info1, info2;
87 info1.myID = 0;
88 info1.dataPtr = data;
89 info1.dataSize = dataSize;
90 info1.count = 0;
91 info2.myID = 1;
92 info2.dataPtr = data;
93 info2.dataSize = dataSize;
94 info2.count = 0;
95

96 // allocate space for a return value
97 int returnVal;
98 // call the worker threads
99 if ( returnVal = pthread_create( &worker1tid, NULL, partial3SumThread, &info1 ) ) {
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100 cerr<< "pthread_create 1: "<< returnVal <<endl;
101 exit( 1 );
102 }
103 if ( returnVal = pthread_create( &worker2tid, NULL, partial3SumThread, &info2 ) ) {
104 cerr<< "pthread_create 2: "<< returnVal <<endl;
105 exit( 1 );
106 }
107 // now wait on the threads to finish
108 if ( returnVal = pthread_join( worker1tid, NULL ) ) {
109 cerr<< "pthread_join 1: "<< returnVal <<endl;
110 exit( 1 );
111 }
112

113 if ( returnVal = pthread_join( worker2tid, NULL ) ) {
114 cerr<< "pthread_join 2: "<< returnVal <<endl;
115 exit( 1 );
116 }
117

118 cout<< info1.count + info2.count <<endl;
119 }

The program has a relatively simple structure, the core of the Sum3 computation is done in the
partial3SumThread function. 2 instances of the function are launched, and we assigned the first instance an
ID of 0, and the second instance and ID of 1. These thread IDs are manually assigned and stored in a threadInfo
struct that we create. The structs are created and initialized on lines 87-95. Based on the thread’s ID, we determine
which half of the array a thread should use in the outer loop of the Sum3 computation (lines 39-42). A thread is
launched on line 100 and line 104. Once all the threads are launched, the main thread must wait for them to complete
before printing the result, so the main thread calls one join function for each thread (lines 109 and 114). Once all
worker threads have joined, we print the result.

Here are some running times on a machine with a 2 core cpu, and the results graphed along with the serial and serial
quadratic versions of the algorithm:

Array Size Time (s)
100 .01
200 .019
300 .029
400 .063
500 .125
600 .207
700 .324
800 .475
900 .668
1000 .912
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The pthreads version is clearly faster. As expected, the version with two threads runs roughly twice as fast as the
version with 1 thread. For an array of 500, the speedup is 1.9, for an array of 1000, the speedup is 2.08. A speedup of
more than 2 is likely due to timing granularity. The linux time command was used, which is not the most accurate
time keeping method. Other considerations should have an impact. For example, the two threads could have an effect
on cache, causing a greater amount of cache hits or misses than the single threaded version. Cache misses cause the
processor to stall, wasting time. More cache hits means the processor stalls less, and does the work in a shorter amount
of time.

Exercise
The Pthreads version of the Sum3 problem is hard coded to handle 2 threads. Convert the program such that it will
take the number of threads to use as a command line argument, and then generate that many threads. Hint: you will
have an easier time of it if you use vectors to hold all thread information. For example, you will have a vector of
threadInfo structs, on for each thread.

Thread Communication

In the Pthreads version of Sum3, very little thread communication took place. In fact, the only thread communication
that happened was the master thread provided some data to the worker threads in the form of a function argument.
Usually, threads will communicate with each other through shared memory. The key to understanding shared mem-
ory is understanding scoping rules. Basically, a thread will have access to all memory locations that are in scope for
that thread, and all memory locations accessible through pointers that are in scope for that thread. This means that if a
variable has global scope, then ALL threads will be able to read and write to it. This means, two threads can commu-
nicate by reading and writing to such a value. In our program above, we declared two instances of the threadInfo
struct in the main() function (line 87); those instances are info1, info2. Those structs now exist in memory,
but the names info1, info2 exist in scope for the main() function. We store information that the threads need
in those structs. To provide access to that information, we pass the pointer to one of those structs to each thread during
the pthread_create call. This means that a thread can access its struct through that pointer. Essentially, the
master thread has communicated with the worker threads, letting them know their thread ID, the input array, etc.

Note that in the program, only 1 copy of the data array exists. It is created in the main() function. Pointers to that
array are stored in the threadInfo structs, so that each thread can access the same array. This does not cause any
problems because both threads only read the array, they are not making changes to it. Also note that each struct has
its own memory location to store a count. Thus, each thread is keeping track of its own count. This is why all the
count values from the threadInfo structs must be summed in line 119.
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Exercise
Change the pthreads Sum3 program such that both threads access the same memory location for keeping track of their
count variable. Don’t use any other pthread library features. Run the program multiple times. What happens to the
result value? why?

2.3.2 Doing Things a Little Differently with OpenMP

Pthreads is just one method to create multi-threaded programs. Most languages have some built-in mechanism or
library to launch threads. Another mechanism in C/C++ is OpenMP. One drawback to pthreads is that although the
core Sum3 computation changed very little in the pthread program, the program did require some somewhat significant
structural changes. Recall that we had to put our computation into a function, set up a struct to pass data to the function,
introduce create and join function calls, etc. Furthermore, we only implemented 2 threads, implementing more threads
requires even more work. So, there is some programming overhead to converting a serial program to a parallel program
using pthreads.

OpenMP takes a compiler-based approach to threading. Instead of inserting function calls and re-organizing code to
create threads, OpenMP requires you to place compiler directives near portions of code that will be run in parallel so
the compiler can generate a team of threads. These directives are known as pragmas. One of the goals of OpenMP
is to provide a mechanism whereby serial code can be parallelized using multiple threads with only minor code
modifications. The result is that you can write a serial program, debug it while it is serial (a much easier task than
debugging parallel code), and then simply add a pragma to achieve parallelism using multiple threads.

As an example, we will write a OpenMP version of the Sum3 problem with a similar structure as the Pthread version:
we will create 2 threads, and each thread will only iterate over a portion of the outer loop. We will need the following
OpenMP pragmas and functions:

OpenMP Interface
1 #pragma omp parallel
2 {
3 // some code
4 }

Will create a team of n threads where n is the number of computational cores available on the computer on which this
code is executed. Each thread will execute the code in the code block. No code will be executed beyond the code
block until all threads have joined.

1 int omp_get_thread_num();

Returns the unique thread identifier of the thread that executes this function. If only a single thread exists,
the function always returns 0. If multiple threads exist, the function returns a number in the range from 0 to
omp_get_num_threads()-1.

1 int omp_get_num_threads();

Returns the number of threads in the current team. If only 1 thread exists (the serial portion of the code), it returns 1.

1 void omp_set_num_threads( int num_threads );

Sets the default number of threads to create in subsequent parallel sections (for example, sections defined by #pragma
omp parallel).

1 g++ -fopenmp source.cpp

remember to use the OpenMP compiler flag to compile programs using OpenMP.
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With these pragmas and functions, we can duplicate the Pthreads version of the program by forcing 2 threads to
operate on the data. We will call omp_set_num_threads(2) (line 57) to force 2 threads, then break up the work
similarly to what we did before. Much like Pthreads, OpenMP threads will communicate through memory locations;
again, scoping rules apply: (1) any variable whose scope is external to a parallel section will be shared among all
threads, and (2) all threads will have their own private copy of any variable declared within the scope of a parallel
section. So, we will define an integer for each thread to keep track of the number of triples summing to 0 that it sees
external to the parallel section, so we can add those counts together at the end (lines 54-55). Recall in the Pthread
code, we had to explicitly set thread identifiers to 0 and 1; OpenMP will do this for us and each thread can find its ID
using the omp_get_thread_num() function (line 62):

1 #include <iostream>
2 #include <sstream>
3 #include <omp.h>
4

5 using namespace std;
6

7 int getRandInt( int *dataVec, int dataSize )
8 {
9 // load up a vector with random integers

10 int num;
11 for( int i = 0; i < dataSize; i++ ) {
12 // integers will be 1-100
13 num = rand() % 100 +1;
14 if( rand( ) % 2 == 0 ) {
15 // make some integers negative
16 num *= -1;
17 }
18 dataVec[i] = num;
19 }
20 }
21

22

23 int main(int argc, char * argv[] )
24 {
25 int dataSize = 0;
26

27 if( argc < 2 ) {
28 std::cerr << "usage: exe [num of nums] [optional seed value]" << std::endl;
29 exit( -1 );
30 }
31 {
32 std::stringstream ss1;
33 ss1 << argv[1];
34 ss1 >> dataSize;
35 }
36 if( argc >= 3 ) {
37 std::stringstream ss1;
38 int seed;
39 ss1 << argv[2];
40 ss1 >> seed;
41 srand( seed );
42 }
43 else {
44 srand( 0 );
45 }
46

47 // create a data vector
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48 int *data = new int[ dataSize ];
49

50 // load it up with random data
51 getRandInt( data, dataSize );
52

53 // do the naive Sum3 computation. O(n^3)
54 int count1 = 0;
55 int count2 = 0;
56

57

58 omp_set_num_threads( 2 );
59 #pragma omp parallel
60 {
61 int count = 0;
62 int myID = omp_get_thread_num();
63 // each thread only works on half the array in the outer loop
64 // compute the bounds based on the ID we assigned each thread.
65 // remember, we only have 2 threads in this case, so we will hard code a 2
66 int start = (( dataSize / 2) * myID );
67 int stop = ((dataSize / 2)* (myID+1));
68 if( myID == 1 )
69 stop =dataSize-2;
70 for (int i = start; i < stop; i++)
71 for (int j = i+1; j < dataSize-1; j++)
72 for (int k = j+1; k < dataSize; k++)
73 if (data[i] + data[j] + data[k] == 0){
74 count++;
75 }
76 if( myID == 0 )
77 count1 = count;
78 else
79 count2 = count;
80 }
81 cout<< count1 + count2 <<endl;
82 }

Now, some running times. Again, speedup is roughly 2 for the OpenMP version, but the OpenMP version required
much less code reorganization to implement. The running times are a few thousandths of a second higher than the
Pthread versions. This is due to a different implementation of threading. In OpenMP, the compiler implements the
threading, rather than OS system calls. Because of this, the threads get compiled a little differently. Also, different
OpenMP compilers will have slightly different performance results.

Array Size Time (s)
100 .005
200 .014
300 .032
400 .066
500 .124
600 .212
700 .333
800 .492
900 .696
1000 .952

Exercise
Compile the serial cubic version of the program and the openmp version with compiler optimizations turned on. How
do the running times compare then?
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Creating a Lot of Threads

Because OpenMP is integrated into the compiler, the overhead of creating threads is small; thus, it is possible to create
many more threads than available processor cores. An important concept of OpenMP is the idea of worker threads:
on a computer with 2 cores, the number of worker threads defaults to 2. Even if many threads are created, only 2 will
be able to run at any given time. Therefore, it is acceptable, although not always optimal, to create many more threads
than there are processors available. One easy way to create a lot of threads is through the omp parallel for
pragma. This pragma must be placed directly before a for loop. OpenMP will then generate a single thread for every
iteration of that for loop. To be safe, make sure that the for loop contains the initialization, increment, and stopping
condition in the loop declaration!

One problem with generating lots of threads is that we also need to then generate lots of count variables (lines 54-55
above). One alternative is to create a single global count variable, but then make sure that only 1 thread accesses it at a
time. To ensure that only 1 thread accesses a variable at a time, we put that variable access in a critical section using
an OpenMP omp_critical pragma. Anything in a code block directly following an omp_critical pragma is
guaranteed to be accessed by exactly 1 thread at a time. Using these directives, our multi-threaded code looks very
similar to our original code:

1 #include <iostream>
2 #include <sstream>
3 #include <omp.h>
4

5 using namespace std;
6

7 int getRandInt( int * dataVec, int dataSize )
8 {
9 // load up a vector with random integers

10 int num;
11 for( int i = 0; i < dataSize; i++ ) {
12 // integers will be 1-100
13 num = rand() % 100 +1;
14 if( rand( ) % 2 == 0 ) {
15 // make some integers negative
16 num = num * -1;
17 }
18 dataVec[i] = num;
19 }
20 }
21

22

23 int main(int argc, char * argv[] )
24 {
25 int dataSize = 0;
26

27 if( argc < 2 ) {
28 std::cerr << "usage: exe [num of nums] [optional seed value]" << std::endl;
29 exit( -1 );
30 }
31 {
32 std::stringstream ss1;
33 ss1 << argv[1];
34 ss1 >> dataSize;
35 }
36 if( argc >= 3 ) {
37 std::stringstream ss1;
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38 int seed;
39 ss1 << argv[2];
40 ss1 >> seed;
41 srand( seed );
42 }
43 else {
44 srand( 0 );
45 }
46

47 // create a data vector
48 int * data = new int[ dataSize ];
49

50 // load it up with random data
51 getRandInt( data, dataSize );
52

53 int count = 0;
54 // do the naive Sum3 computation. O(n^3)
55 #pragma omp parallel for
56 for (int i = 0; i < dataSize-2; i++)
57 for (int j = i+1; j < dataSize-1; j++)
58 for (int k = j+1; k < dataSize; k++)
59 if (data[i] + data[j] + data[k] == 0){
60 #pragma omp critical
61 {
62 count++;
63 }
64 }
65

66 cout<< count <<endl;
67 }

The one drawback of the critical section is that execution may serialize on it. Therefore, if every thread enters the
critical section in every execution of the loop, then the program will behave much like a serial program in terms of
running time. Therefore, placement of the critical section is important! Note that we placed it inside the if statement.
Every triple must be tested to see if it sums to 0, but only a small portion of the triples actually sum to 0. If we placed
the if statement in the critical section, we would get serial behavior. If every triple summed to 0 (an array of lots
of 0s), we would also get serial behavior (regardless of the placement of the critical section with respect to the if
statement). Thus, the previous method will have more reliable speedups in these edge cases, but this method will get
speedups for input that we are likely to see, and requires only a few lines of modification to the code, and no logic
changes!

Here are the running times. Note that the critical section does have an impact, but it is not too bad. A speedup of 1.9
vs 1.9 for the Pthreads version at an array size of 500 (the same!), and a speedup of 1.9 vs 2.1 for the Pthreads version
at an array size of 1000:

Array Size Time (s)
100 .005
200 .014
300 .032
400 .068
500 .130
600 .218
700 .343
800 .512
900 .722
1000 .989
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Exercise
Change the OpenMP program using a critical section to serialize in 2 ways. First, use an input array of all 0’s. Then
move the critical section to contain the if statement. Compare running times to the serial version of the algorithm
(the cubic one), and give a list of reasons as to why one is faster/slower than the other.

Reductions

OpenMP has a lot of other options, constructs, and functionality. Check the official documentation for more details.
One of the advantages of OpenMP is that many of these constructs make it very easy to achieve tasks that one has to
do manually with pthreads. A good example of this is the reduction.

A reduction simply means to combine many values into a single value using a specified operator. For example, we
can reduce an array of numbers to a single sum of all the numbers in the array (by adding them up). Alternatively, we
could reduce an array to its max or min value, by searching for the largest or smallest value, respectively, in the array.
We can use a reduction to completely get rid of the critical section in the previous version of the code.

When declaring an omp parallel for pragma, we can identify values that will be reduced after all threads have
executed. Each thread will then make its own local copy of any variable specified in a reduction, and OpenMP will
automatically perform the specified reduction of all of those local variables into a single value. The reduction operation
is also specified.

For example, to get rid of the critical section above, we should tell OpenMP to perform a reduction on count. Thus,
every thread will get its own copy of count. We will specify a sum reduction, so that at the end of thread execution, all
the local versions of the count variable get summed into a single variable. The result is that we only have to add a
single line of code to achieve parallel implementation of Sum3. Line 55 specifies that a sum reduction on the variable
count will be computed:

1 #include <iostream>
2 #include <sstream>
3 #include <omp.h>
4

5 using namespace std;
6

7 int getRandInt( int *dataVec, int dataSize )
8 {
9 // load up a vector with random integers

10 int num;
11 for( int i = 0; i < dataSize; i++ ) {
12 // integers will be 1-100
13 num = rand() % 100 +1;
14 if( rand( ) % 2 == 0 ) {
15 // make some integers negative
16 num *= -1;
17 }
18 dataVec[i] = num;
19 }
20 }
21

22

23 int main(int argc, char * argv[] )
24 {
25 int dataSize = 0;
26

27 if( argc < 2 ) {
28 std::cerr << "usage: exe [num of nums] [optional seed value]" << std::endl;
29 exit( -1 );
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30 }
31 {
32 std::stringstream ss1;
33 ss1 << argv[1];
34 ss1 >> dataSize;
35 }
36 if( argc >= 3 ) {
37 std::stringstream ss1;
38 int seed;
39 ss1 << argv[2];
40 ss1 >> seed;
41 srand( seed );
42 }
43 else {
44 srand( 0 );
45 }
46

47 // create a data vector
48 int *data = new int[ dataSize ];
49

50 // load it up with random data
51 getRandInt( data, dataSize );
52

53 int count = 0;
54 // do the naive Sum3 computation. O(n^3)
55 #pragma omp parallel for reduction(+:count)
56 for (int i = 0; i < dataSize-2; i++)
57 for (int j = i+1; j < dataSize-1; j++)
58 for (int k = j+1; k < dataSize; k++)
59 if (data[i] + data[j] + data[k] == 0){
60 count++;
61 }
62 cout<< count <<endl;
63 }

And finally, here are some running times:

Array Size Time (s)
100 .005
200 .013
300 .031
400 .068
500 .125
600 .213
700 .332
800 .505
900 .697
1000 .963

The running times are a bit slower than the Pthreads version, and a bit faster than the OpenMP version with a critical
section. However, remember that the Pthreads version is hard coded to 2 threads, and the programmer essentially
must implement their own reduction if you want to use more threads. This version required adding 1 pragma to an
otherwise unchanged serial implementation and achieved threading that will automatically scale to the number of
available processors with NO extra work! This code is easy to debug (you simply comment out the pragma and debug
in serial), uses advanced features, and is easily adaptable to multiple hardware configurations. This should convince
you of why OpenMP is a popular choice for threading.
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Exercise
Look at the scheduling clauses for OpenMP (the wiki has a concise description). Try dynamic scheduling with various
chunk sizes on the above program. Report the effects on execution time, and describe why those effects are occurring.

Convert the 𝑂(𝑛2) version of the algorithm to a parallel algorithm using OpenMP. Try to get the fastest time for
100,000 numbers. Make sure to use a computer with multiple cores (and hyperthreading turned off!)
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CHAPTER

THREE

MASSIVE PARALLELISM WITH CUDA

Warning: The Cuda code in these examples that use the atomicAdd() function must be compiled with compiler
flags that support atomic functions.
In general, architecture version 2.0 introduced a lot of very useful functionalility, and has been around sufficiently
long that one can usually assume their card supports this level of functionality. Technically, atomic operations
using integer arguments was first available in leve 1.1. Thus, to compile these programs, the command will look
like:
nvcc -arch=sm_20 SOURCE.cu -o EXENAME (for architecture version 2.0)
nvcc -arch=sm_11 SOURCE.cu -o EXENAME (for architecture version 1.1)

Creator Name: Mark McKenney

Content Title: Introduction to the MapReduce Model of Parallelism

Learning Objectives:

1. Describe the general architecture of a GPU.

2. Explain the major, conceptual, architectural differences between a CPU and a GPU processor.

3. Define the concept of a thread block in Cuda.

4. Identify portions of an algorithm that are good candidates for parallelization.

5. Design algorithms with threads that take advantage of GPU architectures.

6. Explain the concept of thread divergence.

7. Describe the basic outline of a Cuda program.

8. Explain the aspects of thread communication that are unique to the GPU.

9. Describe the concepts of grid, grid dimensions, blocks, and threads and how they relate.

10. Use error checking on the GPU.

11. Describe the memory hierarchy of the GPU.

12. Use shared memory to optimize kernel.

Background Knowlege

1. Ability to write, compile, and execute a C/C++ program.

2. Ability to debug simple programs.

Resources Needed

1. Access to a computer with a Cuda enabled GPU.

2. Cuda drivers and the Cuda development kit (nvcc) installed on that computer
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Work Mode

The module is self-contained. One may work through the document alone, or instructors can prepare lectures based
on the information and samples.

In this document, we introduce GPU-style parallelism using Cuda and explore some solutions to the 3sum problem
utilizing a GPU co-processor. We begin with a brief introduction to GPU architecture. Using GPU architecture as
a guide, we introduce GPU programming using Cuda. Cuda is an extension of the C programming language that is
created and maintained by Nvidia. Finally, we develop some solutions to 3sum using Cuda.

3.1 An Introduction to GPU Architectures

Section Goals

1. Describe the big picture concepts related to GPU architectures.

2. Describe the role of an accelerator in a computer system.

3. Show how a piece of work can be split in a large number of threads.

The traditional computer architecture that we have considered in the multi-threaded discussions consists of a processor
and a memory that communicate over a bus. The processor may have multiple cores, or may be multiple physical
processors, but we have thus far treated the computing portion of this model as a single, logical processor, possibly
with multiple cores, as shown in the following figure.

CPU	  

Memory	  

Bus 

Fig. 3.1: A general architecture in which a CPU and memory communicate over a high speed bus.

The model of GPU programming we will explore using Cuda adds a second processing unit to the architectural model
that attaches to the bus. Generally, this processing unit is may be referred to as an accelerator, and is not necessarily
a GPU, although we will assume that it is. The GPU is a self-contained unit that has its own processing units and its
own memory. The entire unit connects to the CPU bus as shown:

The fact that the GPU has its own memory is significant; the GPU must have all data that it needs for its computations
in its own memory! In fact, transfering data from the system memory to the GPU memory must be explicitly done by
the programmer. Also, transferring memory between system and GPU memory can be a performance bottleneck, and
must be managed carefully. Having a separate memory that must be managed by the programmer is the first major
difference that we encounter when using accelerators.

Concept
The GPU has its own memory. In order for the GPU to process a piece of data, it must be explicitly transferred from
the main memory to the GPU memory.

We denote the GPU’s memory: GPU memory.
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CPU	  

Memory	  

Bus 

GPU 

Memory	  Processing	  
cores	  

Fig. 3.2: An architecture in which a GPU is attached to the bus along with the CPU and Memory. Note that the GPU
has its own internal computation and memory units that communicate over an internal bus.

We denote the main memory: Host memory or CPU memory.

The GPU memory is very similar to CPU memory: it is simply a set of storage locations with incrementally increasing
byte addresses.

The GPU processing units are very different from a CPU’s processing units. In general, computer CPU cores are meant
to be general purpose processors that are quite complex and can execute a large variety of algorithms efficiently. In a
sense, each individual core on a desktop processor is designed to execute a single thread at a time (with exceptions for
hyperthreading) and do all sorts of fancy tricks to re-order instructions, predict which way branches go, and identify
and resolve data dependencies. A single GPU processing unit, on the other hand, is a simplistic processing core
without the bells and whistles. Desktop CPUs take the path in which a few, very complex and powerful cores provide
good performance: CPU cores these days have in the ballpark of 4-12 cores. The GPU takes the path in which
each individual processor core is very simple, but there are very many cores: A GPU will have on the order of 2000
computational cores.

GPU processing cores are not independent, as are CPU cores. Groups of GPU cores are linked such that in that group
of cores, all cores are executing the same instruction in the same clock cycle. Therefore, GPUs are very good at
processing items in arrays in which each array element must have the same operations performed it. For example, if
you wanted to increment every number in an array, the GPU could do this well since all cores would be performing
the same operation (incrementing a value) on a different data element (each core gets one value from the array and
increments it). You probably see that while a CPU core is good at large variety of algorithms, on certain types of
algorithms work well on a GPU; particularly, algorithms based on array or matrix manipulations tend to be a good fit
to GPUs.

Concept
So at this point, we know that:

1. GPUs have a large number of rather simplistic processing elements.

2. GPUs have their own memory and can only operate on data that is explicitly transferred into GPU memory

3. GPU processing units are organized into groups such that each core in a group executes the same instruction in
the same clock cycle (typically on a different piece of data in each processing unit).

These three concepts form the foundation for understanding how to effectively program a GPU (or other similar
accelerator) for maximum performance.

Finally, lets look at performance. The architectures of CPUs and GPUs are very different, and thus they have very
different performance characteristics. Intel haswell core processors have about .2 TFLOPS of theoretical performance.
Thats about 200 trillion floating point operations per second. An Nvidia K40 has about 1.5 TFLOPS of double
precision performance and 4.3 TFLOPS of single precision performance. As you can see, the GPU architecture is
capable for achieving an order of magnitude more performance than a desktop processor. However, a GPU can’t
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get that performance for every algorithm! In fact, a single threaded algorithm or an algorithm that does not make
use of the GPU architecture effectively will actually run slower on a GPU than on the CPU. Thus, in order to take
advantage of the computational power of the GPU, we need to develop algorithms so that they can take advantage of
GPU architecture, and divide the work in the algorithms effectively among processing core groups in the GPU.

3.2 The CUDA Computational Model

Section Goals:

1. Explain the major, conceptual, architectural differences between a CPU and a GPU processor.

2. Define the concept of a thread block in Cuda.

In the previous section, we talked about the differences in the processing cores of CPU processors vs GPU proces-
sors. In this section, we expand on that discussion by looking in a more detailed way at the architectural differences
between CPU and GPU processor organization, and then seeing how GPU algorithms need to be structured to fit that
architecture. Note that we used the term processing units to describe a single core on a processor in the previous
section. From this point forward, we will create a few definitions to clear up the terminology:

Processor A full processor with possibly multiple computational cores.

Core A single computational core on a processor.

Streaming processor In effect, a single core on a GPU processor. Although the concepts are not quite equivalent,
conceptually they are similar.

Core	  1	   Core	  2	  Core	  3	   Core	  4	  IO
	  

Cache	  

Func2onal	  
Unit	  

Func2onal	  
Unit	  

Control	  
Logic	  

Cache	  

Memory	  Controller	  

IO
	  

IO
	  

IO
	  

CPU Block Diagram A Single Core on a CPU 

Memory	  (registers)	  

Func2onal	  
Unit	  

Func2onal	  
Unit	  

Func2onal	  
Unit	  

Func2onal	  
Unit	  

Fig. 3.3: A typical CPU block diagram of both an entire CPU and a single core on a CPU.

A typical CPU block diagram looks like diagram in Fig. 3.3. As was mentioned previously, you often see on the order
of 4-12 individual cores, and a decent chunk of cache memory. Note that each core is relatively large; this is because
each core is complex, and generally only handles a single thread at a time (for more information on the cores, check
out the following terms: processors pipelining, superscalar, and hyperthreading). Inside each core is more memory,
some control logic, and then some functional units. A functional unit might be an ALU (add/subtract numbers, etc.),
a floating point multiplier, a memory interface unit, etc. Basically, each functional unit provides some sort of basic
functionality. However, because the core is meant for one thread, there is not a huge number of functional units, and
it there is a lot of space dedicated to control and memory in an attempt to some complicated things to speed up thread
execution (for more information look up the terms: data hazards, branch prediction, stall cycles, memory stall cycles).
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Fig. 3.4: A typical GPU block diagram of both an entire GPU processor and a single streaming multiprocessor
(essentially a core).

A typical GPU block diagram is depicted in Fig. 3.4. Instead of a series of cores, a gpu processor has series of
streaming multiprocessors, what Nvidia calls SMXs 1. Looking at the diagram of a single streaming multiprocessor,
the differences from a CPU core jump out. The SMX contains a bunch of functional units; however, a series of
functional units is controlled by a single control unit with its own small amount of cache. Essentially, every functional
unit controlled by a single control unit will be executing the same operations (add, subtract, multiply, etc.), during the
same clock cycle. Even though they all do the same thing in the same clock cycle, they are all doing it to different
pieces of data (again, remember the example about incrementing every element in an array). So, instead of a CPU core
executing a single thread at a time, the SMX actually executed many threads simultaneously. However, those threads
need to be executing the same instruction in the same clock cycles.

From a purely visual perspective, one notices that the SMX processor devotes a significantly larger amount of area
to functional units, i.e., to computation, as compared to the CPU core. Because a CPU core executes 1 thread at a
time, it needs lots of cache in order hold a lot of memory on chip in an effort to reduce the amount of times a piece
of data must be retrieved from main memory. Basically, the CPU is much faster than main memory access, so any
time a CPU needs data from memory, it has to stall and wait on the data to arrive. By keeping a lot of memory on
chip, a CPU can (and often does) avoid these stalls. The SMX has very little cache. Instead, it takes the approach that
since it designed to execute many threads, any thread that is stalled waiting on a memory request is scheduled out of
the CPU, and another thread that is currently scheduled out can be put into the CPU and begin executing. Therefore,
memory stalls are hidden because the threads that are waiting for memory access get to wait while other threads jump
into the processor and execute. Note that this model assumes there lots of threads. Ideally, there are more threads
than functional units available; really you want a number of threads that is a multiple of the number of functional units
available.

Concept
In a GPU processor, threads that are stalled on memory requests are scheduled out of execution, and threads that are
ready to execute are put into the functional units. Therefore. This approach to hiding memory stalls works best when
there are more threads than functional units avaialable. In general, you want to have many more threads than functional
units available.

Recall the OpenMP model of threading in which it is very easy to create a large number of threads. The GPU processor
is an ideal candidate for this concept of creating many of threadsi (although we will not use OpenMP to do it since

1 In reality, Cuda GPUs have a higher level grouping called Graphics Processing Clusters (GPCs) which contain multiple SMXs and some other
units, such as a raster engine. However, in terms of general purpose computing on the GPU at the level covered in this document, we are mainly
interested in the SMXs.
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OpenMP is specific to CPUs. Check out OpenAcc for the OpenMP counterpart for the GPU).

Because many functional units are controlled by a single control unit, it organize threads into blocks such that each
block can be sent to a group of functional units controlled by a single control unit. In essence, a block is just a group
of threads that have identical code (so they can all do the same thing in the same clock cycle). Really, we will usually
create a bunch of blocks that all do the same thing. A group of blocks will be sent to a SMX, and each block will then
get dispatched to a group of functional units. In keeping with the idea of creating lots of threads, it is OK to send more
blocks to an SMX than it has functional units to handle. The blocks will then get switched in and out of functional
units to hide memory stalls.

Block A group of threads that all contain the same code. Each thread will execute the same code (usually) on a
different data element. Again, think about array elements.

Thread A thread is a single thread of execution. Threads are organized into blocks.

Concept
To effectively use GPU hardware, we need an algorithm that can be designed to create many threads grouped into
multiple blocks such that each thread contains identical code, but will execute on indepenent data.

Algorithms based on arrays and matrices tend to fit this extremely well.

3.3 Creating Algorithms that Divide Work into Many Threads

Section Goals:

1. Identify portions of an algorithm that are good candidates for parallelization.

2. Design algorithms with threads that take advantage of GPU architectures.

With any multi-threaded/parallel/distributed program to be successful, we need to design an algorithm with a few
properties:

1. The work must be be able to be divided into independent units that can be computed (mostly) individually.

2. If threads need to communicate, the communication must be designed so that it occurs efficiently.

3. If threads need to collaborate, the collaboration must be designed so that threads are not spending too much time
waiting on values produced by other threads.

Communication and collaboration are similar. The difference tends to arise in distributed programming scenarios with
lots of threads running on different machines. In such scenarios, one must consider network communication delays,
proximity of servers on a network, etc. In such cases, communication and collaboration manifest separately. In your
typical multithreaded application that runs on a single computer, they can often be treated as one concept. Similarly in
the case of your typical GPU application.

3.3.1 Monte Carlo Algorithm to Approximate Pi

Lets take an example. One fun algorithm to play with is the Monte Carlo Algorithm for Approximating 𝜋. A Monte
Carlo algorithm is essentially a statistical simulation that uses sequences of random numbers as data. In order to
approximate 𝑝𝑖, we will take advantage of some geometric constructs, and the generate a bunch of random data points.

The basic idea for this algorithm comes from the fact that the ration of the area of a circle with radius 𝑟 to the area of
a square with edge length 2𝑟 is equal to 4𝜋:

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑎 𝐶𝑖𝑟𝑐𝑙𝑒

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑎 𝑆𝑞𝑢𝑎𝑟𝑒
=

𝜋𝑟2

(2𝑟)2
=

𝜋

4
= 0.78539816
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The basic idea is that if we can compute the ration of the areas, lets call it 𝛼, then we just multiply it by 4 to get 𝑝𝑖.
So, how do we get the ratio?

One way to compute the ratio 𝛼 is to just count up the number of points that lie inside the circle, and divide it by the
number of points that lie inside the square. However, there are an infinite number of points in both the circle and the
square, and we must do this on a finite computer. So, lets do a Monte Carlo simulation. Our approach is to simply
generate 𝑛 random points inside the square, and count up the number of points that happen to fall only in the circle 𝑚.
The ration 𝑚/𝑛 ≈ 𝛼. An illustration of this approach is shown in Fig. 3.5

Fig. 3.5: An illustration of generating random points in a unit square with a circle inscribed in it.

We can also observe that we don’t necessarily need the entire square and circle, we can get the same ratio by just
considering a single quadrant of the square (Fig. 3.6). This simplifies the code a bit.

Fig. 3.6: Using just one quadrant of the square preserves the desired ratio, and ultimately makes the code more simple.

The algorithm to do this computation looks like the following:

var count = 0
Repeat X times:

x = random value between 0 and 1
y = random value between 0 and 1
if x*x+y*y <= 1:

count = count + 1
piApprox = 4 * (count/X)

The algorithm is rather simple. The next step is to just figure out the best way to assign work to threads. Clearly, the
majority of the work occurs in the for loop. In fact, just about all the work occurs in the for loop. So, we should try
to divide up that work. Notice that each iteration of the loop is rather independent. Each iteration simply gets some
random values and does some calculations. Iterations do write to the same count variable, so they must be careful
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about race conditions, but this is the only problem. So, a natural division of work is that each thread will execute some
number of loop iterations. The next question is: how many threads? Recall that the GPU is very good at creating lots
of threads, and in fact, uses the fact that it is good at having lots of threads to hide memory latencies. So, lets say
that we will create a bunch of threads. Each thread can then do some work, lets say 1000 iterations of the loop, and
keep track of its own local copy of the count variable. At the end, we will have to sum all the local count variables
into a single, final count value. At this point, we have not introduced many of the coding constructs needed to create
a working Cuda program, but we go and show a Cuda implementation of the 𝜋 approximation algorithm. Some of
the particulars are discussed below the algorithm, but this should give you a general idea of how a Cuda program will
look:

1 #include <sstream>
2 #include <iomanip>
3 #include <cuda.h>
4 #include <thrust/host_vector.h>
5 #include <thrust/device_vector.h>
6 #include <curand.h>
7 #include <curand_kernel.h>
8

9 #include <iostream>
10

11 using namespace std;
12

13 #define NUM_POINTS_PER_THREAD 1000
14

15 __global__ void kernel_initializeRand( curandState * randomGeneratorStateArray, unsigned long seed,
16 int totalNumThreads )
17 {
18 int id = (blockIdx.x * blockDim.x) + threadIdx.x;
19 if( id >= totalNumThreads ){
20 return;
21 }
22 curand_init ( seed, id, 0, &randomGeneratorStateArray[id] );
23 }
24

25 __global__ void kernel_generatePoints( curandState* globalState, int* counts, int totalNumThreads )
26 {
27 // calculate which thread is being executed
28 int index = (blockIdx.x * blockDim.x) + threadIdx.x;
29 // create vars
30 float x,y;
31

32 // make sure we don't go off the end of the counts array
33 if( index >= totalNumThreads ){
34 return;
35 }
36

37 // get the state for the random number generator
38 // of this thread
39 curandState localState = globalState[index];
40

41 // generate the points, see if they fall in the unit circle
42 for(int i = 0; i < NUM_POINTS_PER_THREAD; i++ )
43 {
44 x = curand_uniform( &localState );
45 y = curand_uniform( &localState );
46 if( x*x+y*y <= 1 )
47 counts[ index ] ++;
48 }
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49 globalState[index] = localState;
50 }
51

52 int main( int argc, char** argv)
53 {
54 if( argc < 2 ){
55 std::cerr << "usage: " << argv[0] << " [number of threads to use] " << endl
56 << "This program approximates pi using a Monte Carlo approximation and the "<<
57 << "'square inside a circle' method." <<endl
58 << "Each thread will generate 1000 points"<< endl;
59 exit(0);
60 }
61 int numThreads;
62 {
63 stringstream ss1( argv[1] );
64 ss1 >> numThreads;
65 }
66

67 // Step 1: Figure out how many thread blocks we need.
68 dim3 threadsPerBlock( 1024, 1, 1);
69 dim3 numberofBlocks( (numThreads + threadsPerBlock.x-1)/threadsPerBlock.x,1,1);
70 // Step 2: initialize the random number generator on the GPU. Each thread will be generating
71 // its own sequence of random numbers. The random number generator actually does not generate
72 // random numbers. Instead, it generates a sequence of numbers that behave as if they are random.
73 // Basically, if the random number generator is started at the same point in the sequence (and
74 // with the same SEED value) for multiple runs, it will generate the SAME sequence of numbers!
75

76 // Since each thread generates its OWN pseudorandom sequence, each thread needs to keep track of
77 // the STATE of its random number generator. Thus, we create a curandState struct for each thread
78 // that will be generating random numbers. When we make a call to the random numebr generator, we
79 // simply pass the state values to it. This is the standard way of allocating memory on the GPU
80 curandState* devRandomGeneratorStateArray;
81 cudaMalloc ( &devRandomGeneratorStateArray, numThreads*sizeof( curandState ) );
82

83

84 // Step 3: we need to create some vectors. This way uses the thrust libraries to
85 // allocate GPU memory and perform transfers from CPU to GPU memory.
86 // Its a little easier than the tradtional way.
87 // create a vector to hold the counts for each thread
88 thrust::host_vector<int> hostCounts(numThreads, 0);
89 // transfer that vector to the GPU
90 thrust::device_vector<int> deviceCounts( hostCounts );
91 // get a pointer to that vector so we can pass it to the kernel.
92 int* dcountsptr = thrust::raw_pointer_cast( &deviceCounts[0] );
93

94

95 // Step 4: Initialize the random number generator states. Again, each thread needs its own
96 // state. We will seed each of the states based on the current time.
97 // launch a bunch of copies of the kernel (1 for every thread)
98 kernel_initializeRand <<< numberofBlocks, threadsPerBlock >>> ( devRandomGeneratorStateArray,
99 time(NULL), numThreads );

100

101 // Step 5: Generate the points and get counts for how many fall in the unit circle
102 kernel_generatePoints <<< numberofBlocks, threadsPerBlock >>> ( devRandomGeneratorStateArray,
103 dcountsptr, numThreads );
104

105 // Step 6: Each thread generated its own count. We need to add them all up
106 // the easy way is to use a thrust reduction on our thrust vector
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107 // this will occur on the GPU since we use the vector on the GPU
108 // we will perform a recution on the entire array, beginning with a sum value initialized to 0,
109 // and perform a `plus` operation. This will just add up all the numbers in the vector.
110 int sum = thrust::reduce(deviceCounts.begin(), deviceCounts.end(), 0, thrust::plus<int>());
111

112 std::cout << "Our approximation of pi =" <<std::setprecision(10)
113 << (float(sum)/(numThreads*NUM_POINTS_PER_THREAD))*4 << std::endl;
114 return 0;
115 }

In Cuda terminology, a kernel is a function that will be run on a GPU. Our code has two kernels. The first simply
initializes the states of the random number generators for each thread that will run (because we have to generate
random points). The second is actually the body of the for loop in our algorithm. The __global__ keyword simply
tells the compiler that the function can be called from code running on the CPU or from code running on the GPU.

Recall that we said we would generate a bunch of threads, and each thread would run through about 1,000 iterations.
In the kernel_generatePoints kernel, there is a for loop that runs 1,000 times. Remember, the kernels are
constructed so that a single thread executes a single kernel. Recall that in a group of functional units in a SMX, all
functional units are executing the same code in the same clock cycle, but are working on different data. Therefore, A
bunch of threads execute the same kernel (so they have the same code), and in this case, each thread generates its own
random data.

Another issue to think about is the count variables. Remember, we said that each thread would have its own version
of the count variable. Our approach in this code was to create a vector of integers such that each thread would only
use 1 element in the vector as its own count variable. At the end, we have to sum all the counts for each individual
vector into the total count.

Because each thread runs a single kernel, we must tell our program how many threads to create. The program takes
a command line parameter that indicates the number of threads to create. Cuda will simply create as many threads as
you tell it to; threads will automatically be numbered consecutively beginning with number 0. Cuda wants to group
threads into blocks. A block just holds a group of threads, and the blocks are used for scheduling threads to groups
of functional units in an SMX. On lines 68 and 69, we tell Cuda how many threads we want in a block, and then we
compute how many blocks we will need based on the input parameter that user specifies to indicate the number of
threads to create. This information is used at the kernel launch calls on lines 98 and 102 to tell Cuda how many kernels
will be launched (1 kernel per thread). Typically, the first item of business in a kernel is to determine the thread’s ID
number (lines 18 and 28). All of this will be explained in more detail later.

Again, remember that we have to allocate memory both on the GPU and on the CPU. The GPU works on items in GPU
memory, so that data must explicitly be allocated. In our code, we use two mechanisms. The first is the traditional
Cuda way of allocating memory, using cudamalloc(). Lines 80 and 81 allocate some memory to hold the random
number generator states for each thread that will be launched. The second mechanism is to allocate vectors using the
thrust library. Thrust is the equivalent of the standard template library for Cuda. It allows much more concise syntax
for allocating GPU memory and transferring data between the GPU and CPU.

We can run the program multiple times and see that the approximation changes slightly, but does a pretty good job.
Also, you can play with the number of threads launched to see its effect on accuracy and run time.

$ nvcc -arch=sm_20 piGen.cu -o pigen

$ ./pigen 20
Our approximation of pi =3.130199909

$ ./pigen 200
Our approximation of pi =3.139499903

$ ./pigen 2000
Our approximation of pi =3.143307924
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$ ./pigen 20000
Our approximation of pi =3.141334295

$ ./pigen 200000
Our approximation of pi =3.141306162

$ ./pigen 2000000
Our approximation of pi =3.141551018

As the number of generated points becomes larger, the accuracy of the approximation tends to improve. Note that in
the last run we used 2, 000, 000 threads, each running 1, 000 iterations. That is 2, 000, 000, 000 points! Its a lot of
points.

Excercise
Create a file containing the program above. Get it to compile, and run it with different amounts of threads to get a feel
for its performance. Try a few things like altering the number of iterations in a single kernel call. Try changing the
number of threads per block.

Note
Notice the vast majority of the code in the above example is simply setting up memory and kernel calls. The actual
work (done in the for loop in the kernel) is only about 5 lines of code.

3.4 Dividing Work Among Cuda Threads

Section Goals:

1. Design algorithms with threads that take advantage of GPU architectures.

2. Explain the concept of thread divergence.

3. Explain the aspects of thread communication that are unique to the GPU.

As we saw in the last example, one key to effectively programming any parallel system is to divide the work well.
However, we need to keep a couple of things in mind with the GPU.

3.4.1 Dividing the Work

Often, GPU kernels tend to be rather short in terms of lines of code. As kernels grow in complexity, it becomes more
difficult to ensure that you will achieve maximum performance. There are a few reasons for this. One is that each
kernel has a limited amount of registers that can be allocated to it in hardware. If this number is exceeded, the program
will crash. Another is that you don’t want to have a situation where 1 thread in a block has a lot of work to do, and
the others are finished. The GPU gets its power from massive parallelism. Any the amount of work among threads in
a block is unbalanced, you will see sub-optimal performance.

Concept
Kernels tend to be rather short and to the point. One wants to ensure the amount of work being done by threads in a
block is roughly equal.
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3.4.2 Branch Diversion

Some kernels contain if statements. By definition, an if statement forces the thread of execution to either skip over
a code block, or execute it. One cannot expect that ALL threads in a block will ALWAYS follow the same thread of
execution through if statements. For example, in lines 45 and 46 in the example above, some threads will create a
random point that falls in the circle, and others will not. Recall that all threads executing in a group of functional units
must execute the same instruction in the same clock cycle. So, what happens on lines 46 and 47?

When two threads executing in a group of functional units do encounter a situation where one thread enters the block
controlled by the if‘ statement, and the other does not, we say the threads have diverged. Basically, the thread for
which the if statement evaluated to False must simply wait until the other thread executes the code block controlled
by the if statement. This means that one thread stalls while the other executes. This is called thread divergence

Thread divergence can occur when conditional statements and loops exist in kernels. Remember, any time thread
divergence occurs, some threads must simply stall and burn clock cycles. If all threads in a block follow the same path
of execution in a kernel, then no thread divergence, and thus no stalls, occur. This is another reason why kernels tend
to be short and simple.

3.4.3 Thread Communication

Sometimes individual threads must communicate. This typically occurs through shared memory, but GPUs have the
problem that very large numbers of threads are often created. This situation means that just acquiring locks on memory
addresses may often lead to sub-optimal performance.

The rules of shared memory in Cuda are rather intuitive. Any variables declared within a kernel are local in scope to
that kernel, and each individual thread will have its own, private memory location to store that data. Any pointers to
memory passed in to a kernel as an argument points to a memory location that was allocated outside the scope of the
kernel, and thus, all threads will have a pointer to that one, shared location in memory.

If threads must write to a shared global memory address, they often do it through atomic operations, such as atomi-
cAdd. The atomic operators guarantee that race conditions will not occur, but often at the cost of speed.

In our example above, each thread had its own copy of count. Our approach was to create a vector in global memory
that all threads could access, but only allow each thread to access 1 array element. That way, all threads wrote to
independent memory locations, and race conditions were not a problem. The only problem was at the end, we had an
array of counts for each thread, and not a total. So, we had to do one more step and sum the contents of the array.
The practice of reducing an array of values down to a single value is called a reduction. Luckily, the Thrust library
provides many common reductions, such as sum, max, min, etc., and we just used that.

Concept
A ruduction occurs when you take an array of values, and perform some operation on it to reduce it to a singel value
(or sometimes, a smaller set of values). Common examples are:

1. Compute the sum of an integer array.

2. Find the maximum value in an array.

3. Find the minimum value in an array.

Because communicating through shared memory is often problematic in a GPU because of the large numbers of
threads, reductions are very common. This is another reason why kernels tend to be short and simple. Instead of one
big kernel performing an entire algorithm, algorithms are often broken into smaller pieces so that reductions or other
data transformations can occur between steps in the algorithm.
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3.5 An Example: Sum3

Section Goals:

1. Describe the concepts of grid, grid dimensions, blocks, and threads and how they relate.

2. Use error checking on the GPU.

The program to approximate 𝜋 gives a brief example of a Cuda program to give the reader a general idea of the structure
of a Cuda program and the issues that tend to arise. In this section, we develop a Cuda program incrementally to explain
all the details. We will continue the example of the Sum3 problem.

Recall that the Sum3 problem takes an array, and returns the number of triples in that array that sum to the value 0.
The following example illustrates:

Example
The result of computing the Sum3 algorithm on the following list of numbers is 2:

−1,−2, 0, 2, 3

Since:

−1 +−2 + 3 = 0

−2 + 0 + 2 = 0

Again, the simplest way to compute the result is to use a double nested for loop to simply generate all possible triples
and test them. Clearly, this solution has a time complexity of 𝑂(𝑛3). For example:

1 #include <iostream>
2 using namespace std;
3

4 int main( )
5 {
6 int dataSize = 5;
7 int* data = new int[ dataSize ];
8 data[0] = -1;
9 data[1] = -2;

10 data[2] = 0;
11 data[3] = 2;
12 data[4] = 3;
13 // do the naive Sum3 computation. O(n^3)
14 int count = 0;
15 for (int i = 0; i < dataSize-2; i++)
16 for (int j = i+1; j < dataSize-1; j++)
17 for (int k = j+1; k < dataSize; k++)
18 if (data[i] + data[j] + data[k] == 0)
19 count++;
20

21 cout<< count <<endl;
22

23 }

So, lets break this down into a simple Cuda program.
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3.5.1 Step 1: Divide the Work Among Threads

The first step is to figure out how much work each thread will do. We will use our knowledge of the GPU architecture
to pick an amount of work that is relatively manageable and straightforward in an attempt to reduce thread divergence
and unnecessary complexity. Once the program works, we will worry about increasing the complexity to achieve
higher performance.

In the basic CPU version of the program, the purpose of the loops is to simply generate a triple of values from the
array. Remember, the GPU is very good at handling large numbers of threads. So, one way to go about this is to
generate a single thread for every triple that must be generated. Each thread just tests to see if its triple sums to 0.
However, that is probably a little bit of overkill in terms of thread creation since this it will generate 𝑂(𝑛3) threads.
Instead, lets have each thread do a bit more work. Lets have each thread contain a single for loop: thus, a thread will
be generated with 2 values of a triple fixed, and it will generate all possible triples that contain those two fixed values:

Example
If we want each thread to have 2 fixed values, then for the situation depicted in the previous exmaple code that uses
the following array:

−1,−2, 0, 2, 3

We will generate threads that do the folllowing:

Thread Fixed values Triples tested in the thread
1 -1, -2 (-1,-2,0), (-1,-2,2), (-1,-2,3)
2 -1, 0 (-1, 0,2), (-1, 0,3)
3 -1, 2 (-1, 2,3)
4 -2, 0 (-2, 0,2), (-2, 0,3)
5 -2, 2 (-2, 2,3)
6 0, 2 ( 0, 2,3)

Therefore, we need a kernel that has two fixed array indexes, and loops over the array for the third. Cuda provides
a mechanism by which we can assign identifiers to threads. The basic idea is that thread numbers start at 0, and
increment up to the number of threads we wish to generate. This makes it very easy to assign a particular array
location to a particular thread for computation. Furthermore, we can structure these thread IDs so that they are 2 or 3
dimensional so that they correspond to 2D array (matrix) locations or 3D array (matrix) locations. Cuda supplies some
special, built-in variables that allow us to access the ID of a particular in a kernel. Remember, many threads execute
the same kernel, but with different thread IDs, allowing us to easily assign different array locations to be processed by
different threads.

The special built in variables that provide access to a thread’s ID are:

threadIdx A struct containing 3 integers: threadIdx.x, threadIdx.y, and threadIdx.z

blockIdx A struct containing 3 integers: blockIdx.x, blockIdx.y, and blockIdx.z

blockDim A struct containing 3 integers: blockDim.x, blockDim.y, and blockDim.z

Instead of simply numbering threads from 0 up to the total number of threads, threads are divided into blocks. Each
block begins numbering threads at 0. To get the threads actual number (as if the numbers just incremented across the
entire range of threads), you must add the threadIdx value to the blockIdx * blockDim values. The following example
depicts this concept visually

Example
Assume we have a 2D array (a matrix) with 10 rows and 11 columns. We want to create kernel threads such that each
thread access a single cell in the matrix. The most straightforward to do this is for each thread to have an ID that
corresponds to a matrix cell. So, we will create threads with 2-dimensional IDs (a row and column value).
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We must also break the threads up into blocks. A Cuda block can hold up to 1024 threads (typically), wich can hold
all of our threads in this case. For the purposes of exposition, howeve, we will specify blocks to contain 3 threads in
the 𝑋 dimension and 4 threads in the 𝑌 dimension.

Note that matrices use [row][column] addressing and cuda uses [X][Y] addressing. Therefore:

𝑋 = 𝑐𝑜𝑙𝑢𝑚𝑛

𝑌 = 𝑟𝑜𝑤

Thus, we can visually represent the thread IDs as follows:

Each matrix cell is labeled with its threadIdx values in blue, the actual matrix cell numbers in red. To compute the
matix cell numbers, we need to know the block containing the thread, and the dimension of the blocks. In our example,
we have:

blockDim.x=3

blockDim.y=4

So, the thread associated with matrix cell 7,6 (row 7, column 6), we have the following:
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threadIdx.x = 0 (column)

threadIdx.y = 3 (row)

blockIdx.x = 2 (column)

blockIdx.y = 1 (row)

Cell address = ((blockIdx.y * blockDim.y)+threadIdx.y, (blockIdx.x * blockDim.x) + threadIdx.x) = (row, column)

Cell address = (7,6)

Note: Note that this example equated the X values with columns and the Y values with rows. You can switch this if
you like, just make sure to carry the switch through all the calculations.

Warning: Notice that the blocks extend past the end of the array. Threads WILL be created with IDs for these
areas, and they will be accessing memory out of the array bounds. In each individual kernel, you must check
to make sure the threadID corresponds to a matrix cell that is IN ARRAY BOUNDS! If not, your program will
probalby crash.
If a Cuda program crashes within a kernel, it can be difficult to debug. A good rule of thumb is to first make sure
you are not exceeding array bounds.

Now that we can determine thread IDs, we can construct a simple kernel. Remember, each thread will have 2 values
fixed, and iterate over all remaining possibilities to form triples. The following code accomplishes this:

1 __global__ void sum3Kernel( int* device_nums, int arraySize, int* count )
2 {
3 const int aIndex = threadIdx.x + (blockDim.x * blockIdx.x);
4 const int bIndex = threadIdx.y + (blockDim.y * blockIdx.y);
5 const int size = arraySize;
6

7 if( aIndex < size-2 && bIndex < size-1 && bIndex > aIndex )
8 {
9 for( int i = bIndex+1; i < size; i++ )

10 {
11 if( device_nums[aIndex] + device_nums[bIndex] + device_nums[i ] == 0 )
12 {
13 atomicAdd( count, 1 );
14 }
15 }
16 }
17 }

The __global__ keyword indicates that the kernel can be called from code executing on both the CPU and GPU. The
function takes 3 variables:

1. device_nums: An array of integers that we are computing the Sum3 algorithm upon.

2. arraySize: The length of the array device_nums.

3. count: A pointer to an integer allocated in GPU memory. Each time we find a triple that sums to 0, we will
increment the count.

Lines 3 and 4 use the thread and block IDs to identify a pair of numbers in the device_nums array. We assume we will
launch threads with 2 dimensional IDs. Each ID will form the index of a number in the device_nums array. The kernel
will then form all possible triples with numbers from device_nums that use those two indexes.

Line 7 just makes sure that we are staying in the array bounds, and that we are not creating duplicate triples.

The loop on line 9 iterates over the appropriate values in the array to form triples.
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Line 11 tests a triple to see if it sums to 0.

Line 13 increments the count variable. Since we may have a very large number of threads, and all threads are going
to access the same location in GPU memory, a raw memory access will have race conditions. To get around this, we
use an atomic function. The atomic function ensures that the increments to count will happen as if the program was
a serial program (i.e., no race conditions will occur). This can negatively affect performance. In our case, not very
many triples will end up summing to 0, so it shouldn’t affect performance too much.

At this point, we have a kernel that will divide up work among the threads in a reasonable fashion. The rest of program
is just setting up memory, and launching the right number of threads!

3.5.2 Step 2: Setting up GPU Memory

Our kernel takes three arguments. One is the arraySize integer. By inspecting the function, you should see that is a
pass by value argument, meaning that the actual integer will copied into a variable in the local scope of the function.
This is achieved in the normal way of using a pass by value variable in a function call. The other two arguments are
pointers to memory addresses. Because the kernel is run on the GPU, these pointers MUST point to allocated memory
on the GPU. So, we must allocate that memory.

The process to allocate memory on the GPU is the same as on the CPU. We simply use a memory allocation function
to allocate the memory, then we initialize it. The only difference is that we use allocation functions provided by Cuda.
Also, we can either initialize the memory using a kernel, or we can just copy data into the allocated memory from
CPU memory. So, the usual recipe goes as follows:

1. Allocate memory on the CPU

2. Initialize the memory using code run on the CPU

3. Allocate an identical memory structure on the GPU

4. Copy the initialized memory from the CPU to the GPU

Again, we must simply use Cuda provided functions to do the GPU stuff. Here is the code to intialize the device_nums
array and the count integer:

1 // Create an array of numbers in traditional memory.
2 // Fill the array with random values
3 std::vector<int> data;
4 srand(0);
5 for( int i = 0; i < total; i++ )
6 {
7 int tmp = myRandInt( ); // retuns a random integer between -100 and 100
8 data.push_back( tmp );
9 }

10

11 // Step 1: Create an array on the GPU to hold the numbers that we
12 // will do the sum3 computation on
13 int *device_nums;
14 cudaMalloc( &device_nums, data.size() * sizeof( int) );
15

16 // Step 2: Copy the data to the device array
17 cudaMemcpy(device_nums, &(data[0]), data.size() * sizeof( int), cudaMemcpyHostToDevice);
18

19 //Step 3: We must keep track of the number of triples that sum
20 // to 0. We will create a single memory location (variable) on
21 // the GPU that is SHARED among ALL threads. Whenever a thread
22 // finds a triple that sums to 0, this variable will be incremented
23 int* device_count;
24 cudaMalloc( &device_count, sizeof( int) );
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25 {
26 // initialize the count to 0
27 int startCount = 0;
28 cudaMemcpy(device_count, &(startCount), sizeof( int), cudaMemcpyHostToDevice);
29 }

In the above code, the array is allocated first. Line 3 creates a vector that is then initialized with random numbers in
lines 5-9.

To create the GPU memory, we first need a pointer to record the address of the memory we allocate (line 13). The
GPU memory allocation function is cudaMalloc (line 14). We pass the pointer to hold the address of the allocated
memory, and size of the chunk of memory we want to be allocated.

To copy data to the GPU, we simply use cudaMemcpy (line 17). It takes a pointer to the GPU memory, a pointe
to the CPU memory to be copied, and the size of the chunk of memory to be copied. Finally, we pass a constant
cudaMemcpyHostToDevice. This just is just a check to ensure that we are copying data form the host (CPU) to the
device (GPU). Really, this just makes the code easier to read.

The count variable is allocated and initialized in exactly the same way (lines 23-29). The only difference is that a
single integer is allocated instead of an array of integers.

Note: Only 1 integer is created and called count. This means ALL threads executing the kernel above access the
SAME memory location. This is why the atomic function is required to avoid race conditions.

3.5.3 Step 3: Launching the Threads

Now that we have set up the kernel, allocated the memory, and intialized the memory, it is time to launch the threads.
Recall that the kernel expects threads to be numbered with a 2-dimensional numbering scheme. In order to to this,
we first have to decide how many threads we want in each block. Based on that concept, we can then do some
arithmetic to determine how many blocks are required to generate threads over our entire data set. Cuda provides a
struct with 3 integers that allow us to specify X, Y, and Z values for the numbers of threads per block and the number
of blocks. It is called dim3.

So, to record the number of threads per block we want, we simply create and initialize a dim3 struct. To indicate the
number of blocks to create, we simply divide the threads per block into the array size along each dimension.

Remember, we want each thread to have a 2-dimensional ID, so we create threads in 2-dimensions. The thread IDs
will index two spots in the array. Note that (take a look at the CPU code above), the thread IDs that we need only
form an upper-triangular matrix of valid IDs (i=0, j=i+1, etc). This means about half of our threads won’t actually do
anything. But, thats OK! although not optimal. Fig. 3.7 shows the values of 𝑖 and 𝑗 that must be used to form triples.
Clearly, we generate a lot of threads that do nothing. The good thing is, these threads will launch, run for a couple
clock cycles (basically just compute their IDs and hit the if statement), and then be done. Overall, it is not a big deal
in this case.

The code below has the code to assign the number of threads per block and the number of blocks to create based on
array size. The kernel launch has a funny <<< >>> syntax. This is used to tell Cuda how many threads to launch,
and how to arrange them into blocks:

dim3 threadsPerBlock(16,32);
dim3 numBlocks((data.size() +threadsPerBlock.x-1)/ threadsPerBlock.x,

sum3Kernel<<< numBlocks, threadsPerBlock>>> ( device_nums, data.size(), device_count );

Many GPUs have a max block size of 1024 threads. Check the documentation of your GPU to be sure. Here, we use
a smaller block size. Try playing around with block sizes to see how they affect performance.
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Fig. 3.7: A depiction of the values of 𝑖 and 𝑗 that must be used to form triples for testing in the sum3 problem. The
shaded cells are the values of 𝑖 and 𝑗 that must be used.

3.5.4 Step 4: Transfer the result back to GPU memory

The final step is to simply transfer the vlaue of count from the GPU back to the CPU so we can print it out. This occurs
with a cudaMemcpy just like transferring data to the GPU. The code is below:

int totalFound;
cudaMemcpy(&totalFound, device_count, sizeof( int), cudaMemcpyDeviceToHost);

3.5.5 All Together Now

The complete code is shown below.

1 #include <iostream>
2 #include <sstream>
3 #include <fstream>
4 #include <vector>
5 #include <string>
6

7

8

9 /*****************************************************
10 **********************
11 This file is a cuda implementation of the sum3 program.
12

13 It takes an array of numbers, and counts how many triples
14 in the array sum to 0. To do this, the program creates
15 a 3 dimensional array of computations such that each cell
16 in the array represents the computation of the sum of 3 numbers
17 in the array. There are errors in that duplicates are not accounted for,
18 but the code works.
19

20 **********************
21 ******************************************************/
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22

23

24

25 __global__ void sum3Kernel( int* device_nums, int arraySize, int* count )
26 {
27 const int aIndex = threadIdx.x + (blockDim.x * blockIdx.x);
28 const int bIndex = threadIdx.y + (blockDim.y * blockIdx.y);
29 const int size = arraySize;
30

31 if( aIndex < size-2 && bIndex < size-1 && bIndex > aIndex )
32 {
33 for( int i = bIndex+1; i < size; i++ )
34 {
35 if( device_nums[aIndex] + device_nums[bIndex] + device_nums[i ] == 0 )
36 {
37 atomicAdd( count, 1 );
38 }
39 }
40 }
41 }
42

43 int myRandInt()
44 {
45 int num = rand() % 100 +1;
46 if( rand( ) % 2 == 0 )
47 num *= -1;
48 return num;
49 }
50

51 int main( int argc, char * argv[] )
52 {
53

54 int total = 4;
55

56 if( argc != 2 )
57 {
58 std::cerr << "usage: exe [num of integers to generate for the sum3 computation]" << std::endl;
59 exit( -1 );
60 }
61 {
62 std::stringstream ss1;
63 ss1 << argv[1];
64 ss1 >> total;
65 }
66

67 // Create an array of numbers in traditional memory.
68 // Fill the array with random values
69 std::vector<int> data;
70 srand(0);
71 for( int i = 0; i < total; i++ )
72 {
73 int tmp = myRandInt( );
74 data.push_back( tmp );
75 }
76

77 // Step 1: Create an array on the GPU to hold the numbers that we
78 // will do the sum3 computation on
79 int *device_nums;
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80 cudaMalloc( &device_nums, data.size() * sizeof( int) );
81

82 // Step 2: Copy the data to the device array
83 cudaMemcpy(device_nums, &(data[0]), data.size() * sizeof( int), cudaMemcpyHostToDevice);
84

85 //Step 3: We must keep track of the number of triples that sum
86 // to 0. We will create a single memory location (variable) on
87 // the GPU that is SHARED among ALL threads. Whenever a thread
88 // finds a triple that sums to 0, this variable will be incremented
89 int* device_count;
90 cudaMalloc( &device_count, sizeof( int) );
91 {
92 // initialize the count to 0
93 int startCount = 0;
94 cudaMemcpy(device_count, &(startCount), sizeof( int), cudaMemcpyHostToDevice);
95 }
96

97

98 // Just some code to time the kernel
99 cudaEvent_t startTotal, stopTotal;

100 float timeTotal;
101 cudaEventCreate(&startTotal);
102 cudaEventCreate(&stopTotal);
103 cudaEventRecord( startTotal, 0 );
104

105

106

107 // Step 4: Decide how many threads we will organize into a block. The
108 // number of threads required will depend on the length of the array
109 // containing random numbers. Here, we are simply figuring out
110 // how many threads we need based on the size of that array
111 // (we allocated the array as an STL vector)
112 //
113 // Since EACH thread gets 2 fixed values, we are going to give threads
114 // ID numbers that will indicate the array indexes of the 3 values
115 // that will be fixed in that thread. So, we create a 2 dimensional
116 // thread block. It simply labels each thread with 2 numbers that form
117 // its identifier.
118 dim3 threadsPerBlock(16,32);
119 dim3 numBlocks((data.size() +threadsPerBlock.x-1)/ threadsPerBlock.x,
120 (data.size() +threadsPerBlock.y-1)/ threadsPerBlock.y);
121

122 std::cerr <<"data size: " <<(data.size()) << std::endl;
123 std::cerr <<"block sizes: " <<(data.size() +threadsPerBlock.x-1)/ threadsPerBlock.x
124 <<", " <<(data.size() +threadsPerBlock.y-1)/ threadsPerBlock.y << std::endl;
125

126

127 // Step 5. Now we have computed how many threads to launch. We have
128 // given each thread and identifier consisting of a pair (x,y).
129 // Finally, launch the threads.
130 sum3Kernel<<< numBlocks, threadsPerBlock>>> ( device_nums, data.size(), device_count );
131

132

133 // Step 6: After the threads have all finished, the count of triples that
134 // sum to 0 is still stored on the GPU. We just need to transfer it
135 // back to the CPU so we can print it out.
136 int totalFound;
137 cudaMemcpy(&totalFound, device_count, sizeof( int), cudaMemcpyDeviceToHost);
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138

139 // stop the timer
140 cudaEventRecord( stopTotal, 0 );
141 cudaEventSynchronize( stopTotal );
142 cudaEventElapsedTime( &timeTotal, startTotal, stopTotal );
143 cudaEventDestroy( startTotal );
144 cudaEventDestroy( stopTotal );
145

146 // print it out!
147 std::cerr << "total time in seconds: " << timeTotal / 1000.0 << std::endl;
148 std::cerr << "Total triples found: " << totalFound <<std::endl;
149 }

Exercise
Compile and run the sum3 Cuda program. See how long it takes to run on various inputs. Try different block sizes.
Compile the CPU version of the code and compare running times.

3.5.6 Cuda Error Checking

One thing to remember is that the kernels are running on the GPU, which impacts how errors are reported. If you
remember the first time you had a seg fault using C code, you may recall that it was initially baffling. The program
crashed and really gave you no clues as to where in the code the error occurred. The nice thing about seg faults is that
you can usually find out rather easily that the crash was indeed a seg fault. If you have a memory error on the GPU, it
is even harder to tell what is going on. Basically, the program will continue to run, in many cases, but the GPU your
GPU computations just won’t work. If you are lucky, you will get some kind of message indicating that something
went wrong.

When an error does occur on the GPU, error flags are set; one must simply check to see if any error flags are set
after making a Cuda call. The following version of the code is identical to the code above, but has some macros and
functions that will check the error flags on the GPU and halt the program if one is set. The code has been floating
around the Internet for a while, and originated in the examples that come with the Cuda SDK. Here is the full Sum3
code with the error checking code. Do note that there is a comment about one of the error checking calls affecting
performance (lines 60-68). If you are timing your code, you might want to comment that line out, or just turn off error
checking by commenting out the #define CUDA_CHECK_ERROR line (line 29).

1 #include <iostream>
2 #include <sstream>
3 #include <fstream>
4 #include <vector>
5 #include <string>
6

7

8

9 /*****************************************************
10 **********************
11 This file is a cuda implementation of the sum3 program.
12

13 It takes an array of numbers, and counts how many triples
14 in the array sum to 0. To do this, the program creates
15 a 3 dimensional array of computations such that each cell
16 in the array represents the computation of the sum of 3 numbers
17 in the array. There are errors in that duplicates are not accounted for,
18 but the code works.
19

20 Note the usage of CudaSafeCall() and CudaCheckError(). You should use these
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21 becuase cuda does not always fail in an obvious way without these functions.
22 Once things are working, you can remove these functions to speed things up a bit.
23 **********************
24 ******************************************************/
25

26

27 ///////////////error checking stufff
28 // Enable this for error checking
29 #define CUDA_CHECK_ERROR
30

31 #define CudaSafeCall( err ) __cudaSafeCall( err, __FILE__, __LINE__ )
32 #define CudaCheckError() __cudaCheckError( __FILE__, __LINE__ )
33

34 inline void __cudaSafeCall( cudaError err, const char *file, const int line )
35 {
36 #ifdef CUDA_CHECK_ERROR
37

38 if ( cudaSuccess != err )
39 {
40 fprintf( stderr, "cudaSafeCall() failed at %s:%i : %s\n",
41 file, line, cudaGetErrorString( err ) );
42 exit( -1 );
43 }
44 #endif // CUDA_CHECK_ERROR
45

46 return;
47 }
48

49 inline void __cudaCheckError( const char *file, const int line )
50 {
51 #ifdef CUDA_CHECK_ERROR
52 cudaError_t err = cudaGetLastError();
53 if ( cudaSuccess != err )
54 {
55 fprintf( stderr, "cudaCheckError() failed at %s:%i : %s.\n",
56 file, line, cudaGetErrorString( err ) );
57 exit( -1 );
58 }
59

60 // More careful checking. However, this will affect performance.
61 // Comment if not needed.
62 err = cudaDeviceSynchronize();
63 if( cudaSuccess != err )
64 {
65 fprintf( stderr, "cudaCheckError() with sync failed at %s:%i : %s.\n",
66 file, line, cudaGetErrorString( err ) );
67 exit( -1 );
68 }
69 #endif // CUDA_CHECK_ERROR
70

71 return;
72 }
73

74 /////////////////end of error checking stuff
75

76

77 __global__ void sum3Kernel( int* device_nums, int arraySize, int* count )
78 {
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79 const int aIndex = threadIdx.x + (blockDim.x * blockIdx.x);
80 const int bIndex = threadIdx.y + (blockDim.y * blockIdx.y);
81 const int size = arraySize;
82

83 if( aIndex < size-2 && bIndex < size-1 && bIndex > aIndex )
84 {
85 for( int i = bIndex+1; i < size; i++ )
86 {
87 if( device_nums[aIndex] + device_nums[bIndex] + device_nums[i ] == 0 )
88 {
89 atomicAdd( count, 1 );
90 }
91 }
92 }
93 }
94

95 int myRandInt()
96 {
97 int num = rand() % 100 +1;
98 if( rand( ) % 2 == 0 )
99 num *= -1;

100 return num;
101 }
102

103 int main( int argc, char * argv[] )
104 {
105

106 int total = 4;
107

108 if( argc != 2 )
109 {
110 std::cerr << "usage: exe [num of integers to generate for the sum3 computation]" << std::endl;
111 exit( -1 );
112 }
113 {
114 std::stringstream ss1;
115 ss1 << argv[1];
116 ss1 >> total;
117 }
118

119 // Create an array of numbers in traditional memory.
120 // Fill the array with random values
121 std::vector<int> data;
122 srand(0);
123 for( int i = 0; i < total; i++ )
124 {
125 int tmp = myRandInt( );
126 data.push_back( tmp );
127 }
128

129 // Step 1: Create an array on the GPU to hold the numbers that we
130 // will do the sum3 computation on
131 int *device_nums;
132 CudaSafeCall( cudaMalloc( &device_nums, data.size() * sizeof( int) ) );
133

134 // Step 2: Copy the data to the device array
135 cudaMemcpy(device_nums, &(data[0]), data.size() * sizeof( int), cudaMemcpyHostToDevice);
136 CudaCheckError();
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137

138 //Step 3: We must keep track of the number of triples that sum
139 // to 0. We will create a single memory location (variable) on
140 // the GPU that is SHARED among ALL threads. Whenever a thread
141 // finds a triple that sums to 0, this variable will be incremented
142 int* device_count;
143 CudaSafeCall( cudaMalloc( &device_count, sizeof( int) ) );
144 {
145 // initialize the count to 0
146 int startCount = 0;
147 cudaMemcpy(device_count, &(startCount), sizeof( int), cudaMemcpyHostToDevice);
148 CudaCheckError();
149 }
150

151

152 // Just some code to time the kernel
153 cudaEvent_t startTotal, stopTotal;
154 float timeTotal;
155 cudaEventCreate(&startTotal);
156 cudaEventCreate(&stopTotal);
157 cudaEventRecord( startTotal, 0 );
158

159

160

161 // Step 4: Decide how many threads we will organize into a block. The
162 // number of threads required will depend on the length of the array
163 // containing random numbers. Here, we are simply figuring out
164 // how many threads we need based on the size of that array
165 // (we allocated the array as an STL vector)
166 //
167 // Since EACH thread gets 2 fixed values, we are going to give threads
168 // ID numbers that will indicate the array indexes of the 3 values
169 // that will be fixed in that thread. So, we create a 2 dimensional
170 // thread block. It simply labels each thread with 2 numbers that form
171 // its identifier.
172 dim3 threadsPerBlock(16,32);
173 dim3 numBlocks((data.size() +threadsPerBlock.x-1)/ threadsPerBlock.x,
174 (data.size() +threadsPerBlock.y-1)/ threadsPerBlock.y);
175

176 std::cerr <<"data size: " <<(data.size()) << std::endl;
177 std::cerr <<"block sizes: " <<(data.size() +threadsPerBlock.x-1)/ threadsPerBlock.x
178 <<", " <<(data.size() +threadsPerBlock.y-1)/ threadsPerBlock.y << std::endl;
179

180

181 // Step 5. Now we have computed how many threads to launch. We have
182 // given each thread and identifier consisting of a pair (x,y).
183 // Finally, launch the threads.
184 sum3Kernel<<< numBlocks, threadsPerBlock>>> ( device_nums, data.size(), device_count );
185 CudaCheckError();
186

187

188 // Step 6: After the threads have all finished, the count of triples that
189 // sum to 0 is still stored on the GPU. We just need to transfer it
190 // back to the CPU so we can print it out.
191 int totalFound;
192 cudaMemcpy(&totalFound, device_count, sizeof( int), cudaMemcpyDeviceToHost);
193

194 // stop the timer

3.5. An Example: Sum3 69



CyberGIS Education Modules, Release 1.1.1

195 cudaEventRecord( stopTotal, 0 );
196 cudaEventSynchronize( stopTotal );
197 cudaEventElapsedTime( &timeTotal, startTotal, stopTotal );
198 cudaEventDestroy( startTotal );
199 cudaEventDestroy( stopTotal );
200

201 // print it out!
202 std::cerr << "total time in seconds: " << timeTotal / 1000.0 << std::endl;
203 std::cerr << "Total triples found: " << totalFound <<std::endl;
204 }

3.5.7 Performance

Now that we have the full example, we can see how they perform. The following table lists the execution times of the
CPU version of the program without compiler optimizations, the CPU version with -O3 compiler optimizations, and
the GPU version of the code. The time reported is the time for only the computation portion of the code, not setting
up the arrays and generating random numbers. The CPU is an Intel Xeon. The GPU is a Tesla K40.

Array size CPU CPU -O3 GPU
800 1.05393 0.1131 0.0047007
1000 2.05775 0.219797 0.00916141
1200 3.55459 0.378601 0.015605
1400 5.64653 0.600016 0.024847
1600 8.42537 0.893907 0.0369319
1800 12.0064 1.27085 0.0521852
2000 16.4582 1.74128 0.0722541

The GPU gets a speedup of 227 times over the non-optimized CPU code, and a speedup of 24 times over the compiler
optimize CPU code. Thats pretty good. Now, we need to make the GPU code even faster!

3.6 Optimizing

Section Goals:

1. Describe the memory hierarchy of the GPU.

2. Use shared memory to optimize kernel.

At this point, we have a working Sum3 program that uses the GPU, and it is pretty fast. The last bit is just to optimize.
We are following the usual path of getting something working first, then worrying about optimizations. This is usually
a good plan to follow, since debugging a non-optimized implementation tends to be much easier.

When it comes to optimizing Cuda programs, one tends to focus on two venues:

1. Reducing thread divergence.

2. Optimizing memory access.

Memory optimizations, in particular, can lead to an order of magnitude improvement in performance!

3.6.1 Reducing Thread Divergence

The case for reducing thread divergence is obvious. If two threads in a block diverge, one must simply stall. So, its
best to try to arrange our blocks such that threads within a block don’t diverge, or at least minimize divergence. Blocks
are used a unit of grouping threads into groups of functional units on SMX cores.
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3.6.2 Optimizing Memory: Global Memory Accesses

Optimizing memory access is the other major focus. This tends to follow two avenues, the first is optimizing global
memroy accesses.

Global Memory

Global Memory is just the term for main memory on the GPU. When you use cudaMalloc, you are
allocating memory in the GPU’s global memory.

Remember, the GPU is running many threads at once. Thus, in any clock cycle, many memory requests can be issued
at once. GPU memory is highly banked, and these memory requests are handled most efficiently when threads are
requesting memory stored in different memory banks. That way, each bank can find the requested memory in parallel.

In the GPU, memory tends to be allocated in arrays. One simple practice that a programmer can do to encourage
efficient global memory access is to structure the block dimensions so that groups of threads that need to fetch the
same piece of memory are grouped into the same block! Thus, block dimensions can have a big impact on memory
access performance! If multiple threads need the same piece of memory, and all generate a memory request in the
same clock cycle, then the GPU memory system only needs to handle 1 memory access. In essence, those memory
accesses are coalesced into a single memory operation.

Another simple practice it to arrange data in multiple arrays, rather than an array of structs. For example, consider a
program that is computing values based on points consisting of an (𝑥, 𝑌 ) coordinate. The traditional way to manage
this memory is to put the (𝑥, 𝑦) values into a struct, then create an array of structs. However, if a thread needs to
get both 𝑋 and 𝑌 from memory for a particular point, they may be in the same memory bank, requiring 2 memory
requests to the same bank that must be serialized. This is an overly simplistic example, but it gets the idea across. If
instead, the programmer creates two parallel arrays, one containing 𝑋 values and the other containing 𝑌 values, then
𝑋 and 𝑌 will be stored far apart in memory, and will likely be stored on different memory banks.

3.6.3 Optimizing Using Shared Memory:

Again, global memory is the main memory on the GPU. The GPU does do some caching, but it is not as effective as a
traditional memory hierarchy with multiple levels of cache, mainly due to the sheer volume of data being accessed by
thousands of threads. Thus, a completely automatic caching system is not appropriate. Instead, a small, programmer
controlled, high speed memory exists on processor called shared memory.

Shared Memory

Shared memory is a small amount of memory, similar to a cache, that is on processor. It is different
from cache in that it is controlled directly by the programmer. Shared memory is accessible to all threads
grouped into a block.

In particular, there are 5 main things to remember about shared memory:

1. Because it is programmer controlled, shared memory must be explicitly allocated in a kernel.

2. Shared memory is allocated for each thread block. This means that all threads in a block can access the same
shared memory locations. But a thread from one block cannot directly access the shared memory from another
block.

3. Shared memory is essentially local in scope to the block in which it is defined. When all threads in a particular
block terminate, the shared memory associated with that block is automatically deallocated.

4. Unlike cache, the programmer must write the values of shared memory locations back to global memory loca-
tions if those values need to exist beyond the lifetime of a thread block.

5. Shared memory is often used like cache: to take advantage of temporal locality of memory references and not
have to wait on the slower, global memory access.
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So, lets take a look at our sum3 kernel. Each kernel computes its thread ID number, and uses that number to index the
array of random numbers and retrieve 2 values from global memory. Those two values are used over and over again.
They might be good candidates for shared memory, but since they don’t change, its probably better just to assign them
to constant local variables. Doing this will indicate to the compiler that those values should be stored in registers
in the processor, instead of repeatedly accessing global memory to find them. This first optimization looks like the
following:

1 __global__ void sum3Kernel( int* device_nums, int arraySize, int* count )
2 {
3 const int aIndex = threadIdx.x + (blockDim.x * blockIdx.x);
4 const int bIndex = threadIdx.y + (blockDim.y * blockIdx.y);
5 const int size = arraySize;
6

7 if( aIndex < size-2 && bIndex < size-1 && bIndex > aIndex )
8 {
9 const int item1 = device_nums[aIndex];

10 const int item2 = device_nums[bIndex];
11 for( int i = bIndex+1; i < size; i++ )
12 {
13 if( item1 + item2 + device_nums[i] == 0 )
14 {
15 atomicAdd( count, 1 );
16 }
17 }
18 }
19 }

It turns out, that when we make this optimization, the running times stay exactly the same. This is probably due to a
few reasons:

1. Optimizing compilers are really good, and probably did this already at the machine code level.

2. The biggest slowdown is probably the atomic function, as threads must effectively serialize on atomic memory
accesses.

So, now lets use some shared memory. The biggest slowdown is probably the atomic function, so lets deal with that.
Really, each thread only needs to keep track of its own count. Then, we can combine counts at the end. Using shared
memory will allow each thread to keep track of its own count. Then, each block can sum up the count for that block.
Finally, we can use a single atomic call at the end that just reports an entire block’s count back to global memory using
the atomic function. This will greatly reduce the number of atomic function calls.

So, step 1 is to allocate enough shared memory integers so that each thread can have its own, private shared memory
location where it can keep its count. Remember, that thread numbers in a block always start with 0. The easiest way
to do this is to just create an array of integers in shared memory for each block, and have each thread access only 1 of
the values in that array (based on its thread ID). In our case, we need a 2 dimensional array as follows:

1 __shared__ int countArray[blockSizeRows][blockSizeCols];

The above line creates an array with the same dimensions as the thread block, so that each thread can index 1 array
element based on its ID. Note the __shared__ keyword that indicates this is shared memory.

Now, each thread simply increments its count variable as an array location in countArray. Again, a thread access only
the location corresponding to its thread ID (using 2-dimensional thread IDs).

1 const int item1 = device_nums[aIndex];
2 const int item2 = device_nums[bIndex];
3 for( int i = bIndex+1; i < size; i++ )
4 if( item1 + item2 + device_nums[ i ] == 0 )
5 {
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6 countArray[threadIdx.x][threadIdx.y]++;
7 }

Once that is finished, each element in the shared array has a count corresponding to a single thread. We must now
sum those numbers to determine the total count for the thread block. The easiest way to do this is to just have 1 thread
compute that sum. This is where branch diversion will actually help us. The first step to make sure ALL threads in
block have finished summing their triples. Not all threads in a block will finish at the exact same time due to scheduling
issues within the processor. This can be achieved using a barrer synchronization construct:

Barrier synchronization:

A thread synchronization construct in which no thread is allowed to pass a specified barrier (usually a
certain line of code) until all other threads have reached that barrier.

In Cuda, block-level barrier synchronization exists using the function call __synchthreads();. If this function is in a
kernel, no thread in a block will be able to pass that line of code until all other threads in that block reach it. This
gives us an easy mechanism to make sure that all threads in a block reach a certain point in a kernel before letting any
more work take place.

Warning: __synchthreads(); must be on a path of execution such that ALL threads in a block actually execute it.
In other words, you should be very careful (and probably just avoid, in most cases) putting __synchthreads(); in
the body of an if block or in the body of a loop.
__synchthreads(); only provides barrier synchronization on a per block basis. All threads in a block conform to
the synchronization. Threads in different blocks will not be synchronized.

In our kernel, we want to wait until all threads are done creating their own counts, then we will sum up the counts for
the entire block. The easiest way to sum the counts for the block is to just pick 1 thread to do it. Thus, we will wrap
the sum code in an if statement that will only allow the thread with ID (0,0) enter it. All other threads will diverge,
so only thread (0,0) computes the sum. Once the sum is computed, we will perform a single atomic call to the shared
memory location count. Thus, instead of having each thread possible serialize on a bunch of atomic calls, we will have
only 1 atomic call per block of threads. The complete kernel is as follows:

1 const int blockSizeRows = 16;
2 const int blockSizeCols = 32;
3

4 __global__ void sum3Kernel( int* device_nums, int arraySize, int* count )
5 {
6

7 __shared__ int countArray[blockSizeRows][blockSizeCols];
8 int total;
9 const int aIndex = threadIdx.x + (blockDim.x * blockIdx.x);

10 const int bIndex = threadIdx.y + (blockDim.y * blockIdx.y);
11 const int size = arraySize;
12

13 countArray[threadIdx.x][threadIdx.y] = 0;
14 __syncthreads();
15

16 if( aIndex < size && bIndex < size && bIndex > aIndex )
17 {
18 const int item1 = device_nums[aIndex];
19 const int item2 = device_nums[bIndex];
20 for( int i = bIndex+1; i < size; i++ )
21 if( item1 + item2 + device_nums[ i ] == 0 )
22 {
23 countArray[threadIdx.x][threadIdx.y]++;
24 }
25 }
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26 __syncthreads();
27 if( threadIdx.x == 0 && threadIdx.y == 0 )
28 {
29 total = 0;
30 for( int i = 0; i < blockDim.x; i++ )
31 for( int j = 0; j < blockDim.y; j++ )
32 total += countArray[i][j];
33 if( total > 0 )
34 {
35 atomicAdd( count, total );
36 }
37 }
38

39 }

Finally, the complete code is shown as follows:

1 #include <iostream>
2 #include <sstream>
3 #include <fstream>
4 #include <vector>
5 #include <string>
6

7

8

9 /*****************************************************
10 **********************
11 This file is a cuda implementation of the sum3 program.
12

13 It takes an array of numbers, and counts how many triples
14 in the array sum to 0. To do this, the program creates
15 a 3 dimensional array of computations such that each cell
16 in the array represents the computation of the sum of 3 numbers
17 in the array. There are errors in that duplicates are not accounted for,
18 but the code works.
19

20 Note the usage of CudaSafeCall() and CudaCheckError(). You should use these
21 becuase cuda does not always fail in an obvious way without these functions.
22 Once things are working, you can remove these functions to speed things up a bit.
23 **********************
24 ******************************************************/
25

26

27 ///////////////error checking stufff
28 // Enable this for error checking
29 //#define CUDA_CHECK_ERROR
30

31 #define CudaSafeCall( err ) __cudaSafeCall( err, __FILE__, __LINE__ )
32 #define CudaCheckError() __cudaCheckError( __FILE__, __LINE__ )
33

34 inline void __cudaSafeCall( cudaError err, const char *file, const int line )
35 {
36 #ifdef CUDA_CHECK_ERROR
37

38 if ( cudaSuccess != err )
39 {
40 fprintf( stderr, "cudaSafeCall() failed at %s:%i : %s\n",
41 file, line, cudaGetErrorString( err ) );
42 exit( -1 );
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43 }
44 #endif // CUDA_CHECK_ERROR
45

46 return;
47 }
48

49 inline void __cudaCheckError( const char *file, const int line )
50 {
51 #ifdef CUDA_CHECK_ERROR
52 cudaError_t err = cudaGetLastError();
53 if ( cudaSuccess != err )
54 {
55 fprintf( stderr, "cudaCheckError() failed at %s:%i : %s.\n",
56 file, line, cudaGetErrorString( err ) );
57 exit( -1 );
58 }
59

60 // More careful checking. However, this will affect performance.
61 // Comment if not needed.
62 err = cudaDeviceSynchronize();
63 if( cudaSuccess != err )
64 {
65 fprintf( stderr, "cudaCheckError() with sync failed at %s:%i : %s.\n",
66 file, line, cudaGetErrorString( err ) );
67 exit( -1 );
68 }
69 #endif // CUDA_CHECK_ERROR
70

71 return;
72 }
73 /////////////////end of error checking stuff
74

75 const int blockSizeRows = 16;
76 const int blockSizeCols = 32;
77

78 __global__ void sum3Kernel( int* device_nums, int arraySize, int* count )
79 {
80

81 __shared__ int countArray[blockSizeRows][blockSizeCols];
82 int total;
83 const int aIndex = threadIdx.x + (blockDim.x * blockIdx.x);
84 const int bIndex = threadIdx.y + (blockDim.y * blockIdx.y);
85 const int size = arraySize;
86

87 countArray[threadIdx.x][threadIdx.y] = 0;
88 __syncthreads();
89

90 if( aIndex < size && bIndex < size && bIndex > aIndex )
91 {
92 const int item1 = device_nums[aIndex];
93 const int item2 = device_nums[bIndex];
94 for( int i = bIndex+1; i < size; i++ )
95 if( item1 + item2 + device_nums[ i ] == 0 )
96 {
97 countArray[threadIdx.x][threadIdx.y]++;
98 }
99 }

100 __syncthreads();
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101 if( threadIdx.x == 0 && threadIdx.y == 0 )
102 {
103 total = 0;
104 for( int i = 0; i < blockDim.x; i++ )
105 for( int j = 0; j < blockDim.y; j++ )
106 total += countArray[i][j];
107 if( total > 0 )
108 {
109 atomicAdd( count, total );
110 }
111 }
112

113 }
114

115 int myRandInt()
116 {
117 int num = rand() % 100 +1;
118 if( rand( ) % 2 == 0 )
119 num *= -1;
120 return num;
121 }
122

123 int main( int argc, char * argv[] )
124 {
125

126 int total = 4;
127

128 if( argc != 2 )
129 {
130 std::cerr << "usage: exe [num nof nums]" << std::endl;
131 exit( -1 );
132 }
133 {
134 std::stringstream ss1;
135 ss1 << argv[1];
136 ss1 >> total;
137 }
138

139 // create a data vec
140

141 std::vector<int> data;
142

143 for( int i = 0; i < total; i++ )
144 {
145 int tmp = myRandInt( );
146 data.push_back( tmp );
147 //std::cerr<< tmp << std::endl;
148 }
149 //cudaSetDevice(0);
150 // create a device vector
151 int *device_nums;
152 CudaSafeCall( cudaMalloc( &device_nums, data.size() * sizeof( int) ) );
153 // copy the data to the device
154 cudaMemcpy(device_nums, &(data[0]), data.size() * sizeof( int), cudaMemcpyHostToDevice);
155 CudaCheckError();
156

157

158 // put the count on the device
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159 int* device_count;
160 CudaSafeCall( cudaMalloc( &device_count, sizeof( int) ) );
161 {
162 int startCount = 0;
163 cudaMemcpy(device_count, &(startCount), sizeof( int), cudaMemcpyHostToDevice);
164 CudaCheckError();
165 }
166

167

168 //Timing code
169 cudaEvent_t startTotal, stopTotal;
170 float timeTotal;
171 cudaEventCreate(&startTotal);
172 cudaEventCreate(&stopTotal);
173 cudaEventRecord( startTotal, 0 );
174

175

176

177 //create the kernel
178 dim3 threadsPerBlock(blockSizeRows,blockSizeCols);
179 dim3 numBlocks( (data.size() +threadsPerBlock.x-1)/ threadsPerBlock.x,
180 (data.size() +threadsPerBlock.y-1)/ threadsPerBlock.y );
181

182 std::cerr <<"data size: " <<(data.size()) << std::endl;
183 std::cerr <<"block sizes: " <<(data.size() +threadsPerBlock.x-1)/ threadsPerBlock.x
184 <<", " <<(data.size() +threadsPerBlock.y-1)/ threadsPerBlock.y << std::endl;
185

186 sum3Kernel<<< numBlocks, threadsPerBlock>>> ( device_nums, total, device_count );
187

188 CudaCheckError();
189

190

191 // finally, get the count off the GPU
192 int totalFound;
193 cudaMemcpy(&totalFound, device_count, sizeof( int), cudaMemcpyDeviceToHost);
194

195

196 cudaEventRecord( stopTotal, 0 );
197 cudaEventSynchronize( stopTotal );
198 cudaEventElapsedTime( &timeTotal, startTotal, stopTotal );
199 cudaEventDestroy( startTotal );
200 cudaEventDestroy( stopTotal );
201 std::cerr << "total time in seconds: " << timeTotal / 1000.0 << std::endl;
202 std::cerr << "Total triples found: " << totalFound <<std::endl;
203 }

3.6.4 Performance

The following table depicts the running times of the C, optimized C, Cuda, and shared memory Cuda versions of the
sum3 program (in seconds). The shared memory version of the program runs in about half the time of the first GPU
program:
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Array Size CPU CPU -O3 GPU GPU Shared Memory
800 1.05393 0.1131 0.0047007 0.00263213
1000 2.05775 0.219797 0.00916141 0.00477453
1200 3.55459 0.378601 0.015605 0.00793862
1400 5.64653 0.600016 0.024847 0.0121216
1600 8.42537 0.893907 0.0369319 0.0177161
1800 12.0064 1.27085 0.0521852 0.0249915
2000 16.4582 1.74128 0.0722541 0.0336659

• search
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