
Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 1 of 18

Lab 3 Spatial Database: PostGIS

In this lab, we will use PostgreSQL/PostGIS to create and manipulate spatial database. PostGIS is an open

source, freely available, and fairly OGC compliant spatial database extender for the PostgreSQL Database

Management System. In a nutshell it adds spatial functions such as distance, area, union, intersection, and

specialty geometry data types to the database. PostGIS is very similar in functionality to SQL Server 2008

Spatial support, ESRI ArcSDE, Oracle Spatial, and DB2 spatial extender. This lab is designed and developed

based on the OpenGeo tutorial on PostGIS
1
.

Objectives

The goals for you to take away from this lab are:

 Familiarize yourself with the PostGIS to create a spatial database

 Learn how to load GIS layers into a spatial database

 Understand and practice spatial query

Lab Data

Please download the data (data.zip) in the Lab section at Learn@UW system. If you are using Windows, put it

under C:/lab/ (if you do not have a C:/lab fold, please create one). Unzip the data. This file includes New York

census, street, metro station, and neighborhoods shapefiles that can be imported to the database later.

1. Creating a spatial database

Let’s first use the PostgreSQL admin tool, PgAdmin III to create a new spatial database.

 Click Start->Programs->PostgreSQL 9.3->PgAdmin III to start PgAdmin III

Login with the super user postgres and the password you chose during install. Now for the fun part.

 Create your database. Call it nyc or whatever you want. If you are running PostgreSQL 9.3, choose the

template database called postgis_21_sample.

1
 http://workshops.boundlessgeo.com/postgis-intro/index.html

Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 2 of 18

2. Loading GIS Data Into the Database

Now we have a nice fully functional GIS database with no spatial data. Now it is time to populate this database

with various GIS database layers to play with.

2.1 Figure out SRID of the data

Go to the data folder where you put our lab data, you will notice one of the files it extracts is called

nyc_census_blocks.prj. A .prj is often included with ESRI shape files and tells you the projection of the data.

We'll need to match this descriptive projection to an SRID (the id field of a spatial ref record in the

spatial_ref_sys table) if we ever want to reproject our data.

Open up the .prj file in a text editor. You'll see something like:

Based on those file, we can use the spatial_ref_sys table to get the SRID for our nyc_census_blocks.shp layer.

 Open up your pgAdmin III query tool and type in the following statement:

select srid, srtext, proj4text from spatial_ref_sys where srtext LIKE '%18N%' and srtext LIKE

'%83%';

 And then click the green arrow. This will bring up about 10 records.

Note: SRID and spatial_ref_sys

PostGIS database has a spatial_ref_sys table which is the SRID lookup table. An “SRID” stands for “Spatial Reference
IDentifier.” It defines all the parameters of our data’s geographic coordinate system and projection. An SRID is
convenient because it packs all the information about a map projection (which can be quite complex) into a single
number. The PostGIS spatial_ref_sys table is an OGC-standard table that defines all the spatial reference systems
known to the database. The data shipped with PostGIS, lists over 3000 known spatial reference systems and details
needed to transform/re-project between them.

PROJCS["NAD83 / UTM zone 18N",

GEOGCS["NAD83",DATUM["North_American_Datum_1983",SPHEROID["GRS

1980",6378137,298.257222101,AUTHORITY["EPSG","7019"]],TOWGS84[0,0,0,0,0,0,0],A

UTHORITY["EPSG","6269"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["

degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4269"]]

,UNIT["metre",1,AUTHORITY["EPSG","9001"]],PROJECTION["Transverse_Mercator"],PA

RAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-

75],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMET

ER["false_northing",0],AUTHORITY["EPSG","26918"],AXIS["Easting",EAST],AXIS["No

rthing",NORTH]]

Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 3 of 18

 Note the srid of the closest match. In this case it is 26918. NOTE: srid is not just a PostGIS term. It is an

OGC standard so you will see SRID mentioned a lot in other spatial databases, GIS web services and

applications. Most of the common spatial reference systems have globally defined numbers.

A web service to get srid: http://prj2epsg.org/search. From this link, you can upload your .prj file, and it will

return the srid for you.

2.1.1 Loading the Data with the shell command

The easiest data to load into PostGIS is ESRI shape data since PostGIS comes packaged with a nice command

line tool called shp2pgsql which converts ESRI shape files into PostGIS specific SQL statements that can then

be loaded into a PostGIS database.

 Open up a command prompt.

 Cd to the folder you extracted your data, and run the following command:

shp2pgsql -s 26918 nyc_census_blocks nyc_census_blocks > nyc_census_blocks.sql

http://prj2epsg.org/search

Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 4 of 18

 Load into the database with this command:

psql -d nyc -U postgres -f nyc_census_blocks.sql

2.1.2 Loading the Data with the pgAdmin console

Alternatively you can use the pgAdmin III GUI to load the data. In this case, we load the nyc_streets shapefile.

 Click Plugins from the menu, select PostGIS shapefile and DBF loader 2.1 (shown as step 1).

 Click Add File, and select the nyc_streets.shp from your data folder (shown as step 2).

 Make sure you change the SRID to 26918 (step 3).

 Click Import. (You can load multiple files in one import by adding multiple files before pressing

the Import button)

Repeat the import process (using EITHER command line OR pgAdmin III) for another two shapefiles in the

data directory, including nyc_neighborhoods.shp, and nyc_subway_stations.shp.

After successfully loading all the layers, you will have five tables in your spatial database as follows.

Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 5 of 18

3. Simple SQL

Now that we’ve loaded data into our database, let’s use SQL to ask questions of the data! For example, “What

are the names of all the neighborhoods in New York City?” (See Appendix for shapefile fields descriptions)

Now let’s use the SQL query to answer the following questions:

 “What is the population of the City of New York?”

To answer this question, open up the SQL query window in pgAdmin III by clicking the SQL button, then enter

the following query in to the query window:

SELECT SUM(popn_total) AS population FROM nyc_census_blocks;

You will see the output as:

8175032

Now use SQL to answer the following questions (report your SQL statements and results):

Note: refresh our memory for “alias”

You can give a table or a column another name by using an alias. Aliases can make queries easier to both write

and to read. So instead of our outputted column name as sum we write it AS the more readable population.

Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 6 of 18

Q1: What is the population of the ‘Manhattan’? (Note: The “nyc_census_blocks” table includes a “boroname”

field which is the borough each block is in. ‘Manhattan’ is a borough.)

Q2: For each borough, what percentage of the population is native American? (The “nyc_census_blocks” table

includes a “pop_nativ” field that is the number of self-identified native American in each block.)

Descriptions on the columns in the “nyc_census_blocks” table:

blkid A 15-digit code that uniquely identifies every census block. Eg: 360050001009000

popn_total Total number of people in the census block

popn_white Number of people self-identifying as “white” in the block

popn_black Number of people self-identifying as “black” in the block

popn_nativ Number of people self-identifying as “native american” in the block

popn_asian Number of people self-identifying as “asian” in the block

popn_other Number of people self-identifying with other categories in the block

boroname Name of the New York borough: Manhattan, The Bronx, Brooklyn, Staten Island, Queens

geom MultiPolygon boundary of the block

4. Geometries

In the SECTION 2, we loaded a variety of data and we did some simple SQL query in the SECTION 3. Now

let’s have a look at some simple spatial query.

In pgAdmin, once again select the nyc database and open the SQL query tool. Paste this example SQL code into

the pgAdmin SQL Editor window and then execute.

CREATE TABLE geometries (name varchar, geom geometry);

INSERT INTO geometries VALUES

 ('Point', 'POINT(0 0)'),

 ('Linestring', 'LINESTRING(0 0, 1 1, 2 1, 2 2)'),

 ('Polygon', 'POLYGON((0 0, 1 0, 1 1, 0 1, 0 0))'),

 ('PolygonWithHole', 'POLYGON((0 0, 10 0, 10 10, 0 10, 0 0),(1 1, 1 2, 2 2, 2 1, 1 1))'),

 ('Collection', 'GEOMETRYCOLLECTION(POINT(2 0),POLYGON((0 0, 1 0, 1 1, 0 1, 0 0)))');

SELECT name, ST_AsText(geom) FROM geometries;

http://workshops.boundlessgeo.com/postgis-intro/loading_data.html#loading-data

Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 7 of 18

The above example CREATEs a table (geometries) then INSERTs five

geometries: a point, a line, a polygon, a polygon with a hole, and a collection.

Finally, the inserted rows are SELECTed and displayed in the Output pane.

4.1. Metadata Tables

To support the spatial data types and spatial functions that make up a standard

spatial database, PostGIS provides two tables to track and report on the

geometry types available in a given database (shown as the right figure).

 The first table, spatial_ref_sys, defines all the spatial reference systems

known to the database and will be described in greater detail later.

 The second table (actually, a view), geometry_columns, provides a listing

of all “features” (defined as an object with geometric attributes), and the

basic details of those features.

Let’s have a look at the geometry_columns table in our database. Paste this

command in the Query Tool as before:

SELECT * FROM geometry_columns;

Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 8 of 18

By querying this table, GIS clients and libraries can determine what to expect when retrieving data and can

perform any necessary projection, processing or rendering without needing to inspect each geometry. Table

geometry_columns has the following columns:

 f_table_catalog, f_table_schema, and f_table_name provide the fully qualified name of the feature table

containing a given geometry. Because PostgreSQL doesn’t make use of catalogs, f_table_catalog will tend

to be empty.

 f_geometry_column is the name of the column that geometry containing column – for feature tables with

multiple geometry columns, there will be one record for each.

 coord_dimension and srid define the dimension of the geometry (2-, 3- or 4-dimensional) and the Spatial

Reference system IDentifier that refers to the spatial_ref_sys table respectively.

 The type column defines the type of geometry, such as Point, Linestring, Polygon, etc.

Write a SQL query to get answer for the following question:

Q3: What are the geometric data types and srid for table nyc_streets and nyc_subway_stations?

4.2. Spatial Query

Here’s a list of the spatial functions that would be useful for the exercises!

Functions Description

Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 9 of 18

Sum([field]) An aggregate function that returns the total value of the field over all
records in the query.

LIMIT n Restrict the query to return only the first “n” rows.
ORDER BY [field] Return the query in order sorted by the field.
ORDER BY [field] DESC
ORDER BY [field] ASC

Return the query in descending/ascending order sorted by the field.

ST_X(point) Returns the X coordinate of the point
ST_Y(point) Returns the Y coordinate of the point
ST_Length(geometry) Returns the length of the geometry
ST_Area(geometry) Returns the area of the geometry
ST_StartPoint(line) Returns the first point in the line
ST_EndPoint(line) Returns the last point in the line
ST_NumPoints(line) Returns the number of vertices in a linestring
ST_NumInteriorRings(polygon) Returns the number of interior rings (holes) in a polygon
ST_NumGeometries(collection) Returns the number of sub-geometries in any geometry collection

(MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION)
ST_GeometryN(geometry, n) Returns the n’th geometry in the collection (starting from 1)
ST_AsGML(geometry) Returns the GML representation
ST_AsKML(geometry) Returns the KML representation
ST_AsGeoJSON(geometry) Returns the GeoJSON representation
ST_AsText(geometry) Returns the well-known-text representation

Now let’s do the following practice using the spatial functions built in the PostGIS.

 “What is the area of the ‘West Village’ neighborhood?”

SELECT ST_Area(geom) FROM nyc_neighborhoods WHERE name = 'West Village';

Note: The area is given in square meters. To get an area in hectares, divide by 10000; To get an area in acres,

divide by 4047.

 “What is the area of Manhattan in acres?” (Hint: both nyc_census_blocks table and

nyc_neighborhoods table have a boroname in them.)

SELECT Sum(ST_Area(geom)) / 4047 FROM nyc_neighborhoods

WHERE boroname = 'Manhattan';

or...

SELECT Sum(ST_Area(geom)) / 4047 FROM nyc_census_blocks

WHERE boroname = 'Manhattan';

 “How many census blocks in New York City have a hole in them?”

SELECT Count(*) FROM nyc_census_blocks

Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 10 of 18

WHERE ST_NumInteriorRings(ST_GeometryN(geom,1)) > 0;

 “What is the total length of streets (in kilometers) in New York City?” (Hint: The units of measurement

of the spatial data are meters, there are 1000 meters in a kilometer.)

SELECT Sum(ST_Length(geom)) / 1000 FROM nyc_streets;

 “How long is ‘Columbus Cir’ (Columbus Circle) Street?

SELECT Sum(ST_Length(geom)) FROM nyc_streets WHERE name = 'Columbus Cir';

 “What is the length of streets in New York City, summarized by type?”

SELECT type, SUM(ST_Length(geom)) AS length FROM nyc_streets

GROUP BY type

ORDER BY length DESC;

 “What is the JSON representation of the boundary of the ‘West Village’ neighborhood?”

SELECT ST_AsGeoJSON(geom) FROM nyc_neighborhoods WHERE name = 'West Village';

Now use spatial SQL to answer the following questions (report your SQL statements and results):

Q4: “What is the area of the ‘East Village’ neighborhood?” (Note: nyc_neighborhoods table includes a name

field.)

Q5: “What is the area of ‘Brooklyn’ borough in acres?” (Note: table nyc_census_blocks has a boroname field.)

Q6: “What is the total length for the ‘5th Ave’ street? (nyc_streets table includes a name field.)

Q7: What is the geometry type of ‘Pelham St’ street? How long is it?

Note:

The ST_ NumInteriorRings () functions might be tempting, but it also counts the exterior rings of multi-polygons as

well as interior rings. In order to run ST_NumInteriorRings() we need to convert the MultiPolygon geometries of the

blocks into simple polygons, so we extract the first polygon from each collection using ST_GeometryN(). Yuck!

Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 11 of 18

Q8: What is the GML representation of the ‘Broad St’ subway station? What about the KML? Why are they

different? (Note: nyc_subway_stations table includes a name field)

Q9: “How many polygons are in the ‘Red Hook’ neigborhood? (Note: nyc_neigborhoods table includes a name

field)

Q10: What is the length of streets for residential street type in New York City? (Note: nyc_streets table

include a type field, which categorizes the street into residential, footway, service etc.)

5. Spatial Relationship

So far we have only used spatial functions that measure (ST_Area, ST_Length), serialize

(ST_GeomFromText) or deserialize (ST_AsGML) geometries. What these functions have in common is that

they only work on one geometry at a time.

Spatial databases are powerful because they not only store geometry, they also have the ability to

compare relationships between geometries.

Questions like “Which are the closet bike racks to a park?” or “Where are the intersections of subway lines and

streets?” can only be answered by comparing geometries representing the bike racks, streets, and subway lines.

Here is a list of spatial operations to compare geometries.

Functions Description

Sum([field]) An aggregate function that Returns the total value of the field over all records in the query.
ST_Contains(A, B) Returns true if geometry A contains geometry B

ST_Crosses(A, B) Returns true if geometry A crosses geometry B
ST_Disjoint(A, B) Returns true if the geometries do not “spatially intersect”
ST_Distance(A, B) Returns the minimum distance between geometry A and geometry B
ST_DWithin(A, B, d) Returns true if geometry A is distance or less from geometry B
ST_Equals(A, B) Returns true if geometry A is the same as geometry B
ST_Intersects(A, B) Returns true if geometry A intersects geometry B
ST_Overlaps(A, B) Returns true if geometry A and geometry B share space, but are not completely contained by

each other
ST_Touches(A, B) Returns true if geometry A and geometry B share space, but are not completely contained by

each other
ST_Within(A, B) Returns true if geometry A is within geometry B

Now let’s do the following practice using the spatial functions built in the PostGIS.

 “What is the geometry value for the street named ‘Atlantic Commons’?”

SELECT ST_AsText(geom) FROM nyc_streets WHERE name = 'Atlantic Commons';

Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 12 of 18

You will see the result as:

"MULTILINESTRING((586781.701577724 4504202.15314339,586863.51964484 4504215.9881701))"

 “What neighborhood and borough is ‘Atlantic Commons’ in?”

SELECT name, boroname FROM nyc_neighborhoods

WHERE ST_Intersects(geom,ST_GeomFromText('MULTILINESTRING((586782 4504202,586864 45042

16))', 26918));

Since we only have one line segment, we can use the following statements:

SELECT name, boroname FROM nyc_neighborhoods

WHERE ST_Intersects(geom,ST_GeomFromText(‘LINESTRING(586782 4504202,586864 4504216)', 26

918));

 “What streets does Atlantic Commons join with?”

SELECT name FROM nyc_streets WHERE ST_DWithin(geom, ST_GeomFromText('LINESTRING(58

6782 4504202,586864 4504216)', 26918),0.1);

 “Approximately how many people live on (within 50 meters of) Atlantic Commons?”

SELECT SUM(popn_total) FROM nyc_census_blocks WHERE ST_DWithin(geom,

 ST_GeomFromText('LINESTRING(586782 4504202,586864 4504216)', 26918),50);

Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 13 of 18

Now use spatial SQL to answer the following questions (report your SQL statements and results):

Q11: What is the geometry value for the street named ‘Adlai Cir’?

Q12: What neighborhood and borough is ‘Adlai Cir’ street in?

Q13: What streets does ‘Adlai Cir’ join with?

Q14: Approximately how many people live on (within 1km of) ‘Atlantic Commons’ street?

6. Spatial Join

6.1. Join

Spatial joins are the bread-and-butter of spatial databases. They allow you to combine information from

different tables by using spatial relationships as the join key. Much of what we think of as “standard GIS

analysis” can be expressed as spatial joins.

In the previous section, we explored spatial relationships using a two-step process: first we extracted a subway

station point for ‘Broad St’; then, we used that point to ask further questions such as “what neighborhood is the

‘Broad St’ station in?”

Using a spatial join, we can answer the question in one step, retrieving information about the subway station

and the neighborhood that contains it:

SELECT subways.name AS subway_name,

 neighborhoods.name AS neighborhood_name,

 neighborhoods.boroname AS borough

FROM nyc_neighborhoods AS neighborhoods

JOIN nyc_subway_stations AS subways

ON ST_Contains(neighborhoods.geom, subways.geom)

WHERE subways.name = 'Broad St';

We could have joined every subway station to its containing neighborhood, but in this case we wanted

information about just one. Any function that provides a true/false relationship between two tables can be used

to drive a spatial join, but the most commonly used ones are: ST_Intersects, ST_Contains, and ST_DWithin.

SELECT neighborhoods.name AS neighborhood_name, SUM(census.popn_total) AS population,

 Round((100.0 * SUM (census.popn_white) / SUM (census.popn_total))::numeric,1) AS white_pct,

 Round((100.0 * SUM (census.popn_black) / SUM (census.popn_total))::numeric,1) AS black_pct

FROM nyc_neighborhoods AS neighborhoods

JOIN nyc_census_blocks AS census

ON ST_Intersects(neighborhoods.geom, census.geom)

Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 14 of 18

WHERE neighborhoods.boroname = 'Manhattan'

GROUP BY neighborhoods.name

ORDER BY white_pct DESC;

The result would be something like:

What’s going on here? Notionally (the actual evaluation order is optimized under the covers by the database)

this is what happens:

1. The JOIN clause creates a virtual table that includes columns from both the neighborhoods and census

tables.

2. The WHERE clause filters our virtual table to just rows in Manhattan.

3. The remaining rows are grouped by the neighborhood name and fed through the aggregation function

to SUM() the population values.

4. After a little arithmetic and formatting (e.g., GROUP BY, ORDER BY) on the final numbers, our query

spits out the percentages.

We can also use distance tests as a join key, to create summarized “all items within a radius” queries. Let’s

explore the racial geography of New York using distance queries.

First, let’s get the baseline racial make-up of the city.

SELECT 100.0 * SUM(popn_white) / SUM(popn_total) AS white_pct, 100.0 * SUM(popn_black) / SUM(po

pn_total) AS black_pct, SUM(popn_total) AS popn_total

FROM nyc_census_blocks;

So, of the 8M people in New York, about 44% are “white” and 26% are “black”.

Note: Refresh our memory about Join

The JOIN clause combines two FROM items. By default, we are using an INNER JOIN, but there are four other

types of joins. For further information see the join_type definition in the PostgreSQL documentation.

Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 15 of 18

Duke Ellington once sang that “You / must take the A-train / To / go to Sugar Hill way up in Harlem.” As we

saw earlier, Harlem has far and away the highest African-American population in Manhattan (80.5%). Is the

same true of Duke’s ‘A-train’ line?

First, note that in the nyc_subway_stations table, routes field is what we are interested in to find the ‘A-train’

line. The values in there are a little complex.

SELECT DISTINCT routes FROM nyc_subway_stations;

Let’s summarize the racial make-up of within 200 meters of the ‘A-train’ line.

So to find the A-train, we will want any row in routes that has an ‘A’ in it. We can do this a number of ways,

but today we will use the fact that strpos(routes,’A’) will return a non-zero number if ‘A’ is in the routes field.

SELECT DISTINCT routes

FROM nyc_subway_stations AS subways

WHERE strpos(subways.routes,'A') > 0;

Q15: If you are not allowed to use strops() function, how can you get all the routes that include A-train? (Hint:

use keyword LIKE)

Let’s summarize the racial make-up of within 200 meters of the A-train line.

SELECT

 100.0 * SUM(popn_white) / SUM (popn_total) AS white_pct,

 100.0 * SUM (popn_black) / SUM (popn_total) AS black_pct,

 SUM (popn_total) AS popn_total

FROM nyc_census_blocks AS census

JOIN nyc_subway_stations AS subways

ON ST_DWithin(census.geom, subways.geom, 200)

WHERE strpos(subways.routes,'A') > 0;

Note: Refresh our memory about DISTINCT

The DISTINCT keyword eliminates duplicate rows from the result. Without the DISTINCT keyword, the query above

identifies 491 results instead of 73.

Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 16 of 18

So the racial make-up along the A-train isn’t radically different from the make-up of New York City as a whole.

6.2. Advanced Join

In the last section we saw that the A-train didn’t serve a population that differed much from the racial make-up

of the rest of the city. Are there any trains that have a non-average racial make-up?

To answer that question, we’ll add another join to our query, so that we can simultaneously calculate the make-

up of many subway lines at once. To do that, we’ll need to create a new table that enumerates all the lines we

want to summarize.

CREATE TABLE subway_lines (route char(1));

INSERT INTO subway_lines (route) VALUES

 ('A'),('B'),('C'),('D'),('E'),('F'),('G'),

 ('J'),('L'),('M'),('N'),('Q'),('R'),('S'),

 ('Z'),('1'),('2'),('3'),('4'),('5'),('6'),

 ('7');

Now we can join the table of subway lines onto our original query.

SELECT

 lines.route,

 Round((100.0 * SUM(popn_white) / SUM(popn_total))::numeric, 1) AS white_pct,

 Round((100.0 * SUM(popn_black) / SUM(popn_total))::numeric, 1) AS black_pct,

 Sum(popn_total) AS popn_total

FROM nyc_census_blocks AS census INNER JOIN nyc_subway_stations AS subways

ON ST_DWithin(census.geom, subways.geom, 200)

INNER JOIN subway_lines AS lines ON strpos(subways.routes, lines.route) > 0

GROUP BY lines.route

ORDER BY black_pct DESC;

As before, the joins create a virtual table of all the possible combinations available within the constraints of

the JOIN ON restrictions, and those rows are then fed into a GROUP summary. The spatial magic is in

Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 17 of 18

the ST_DWithin function that ensures only census blocks close to the appropriate subway stations are included

in the calculation.

6.3. Exercise

 “What subway station is in ‘Little Italy’? What subway route is it on?”

SELECT s.name, s.routes FROM nyc_subway_stations AS s

INNER JOIN nyc_neighborhoods AS n ON ST_Contains(n.geom, s.geom)

WHERE n.name = 'Little Italy';

 “What are all the neighborhoods served by the 6-train?” (Hint: The routes column in

the nyc_subway_stations table has values like ‘B,D,6,V’ and ‘C,6’)

SELECT DISTINCT n.name, n.boroname FROM nyc_subway_stations AS s

INNER JOIN nyc_neighborhoods AS n

ON ST_Contains(n.geom, s.geom)

WHERE strpos(s.routes,'6') > 0;

 “After 9/11, the ‘Battery Park’ neighborhood was off limits for several days. How many people had to

be evacuated?”

SELECT SUM(popn_total)

FROM nyc_neighborhoods AS n

INNER JOIN nyc_census_blocks AS c

ON ST_Intersects(n.geom, c.geom)

WHERE n.name = 'Battery Park';

 “What are the population density (people / km
2
) of the ‘Upper West Side’ and ‘Upper East

Side’?” (Hint: There are 1000000 m
2
 in one km

2
.)

SELECT n.name, SUM (c.popn_total) / (ST_Area(n.geom) / 1000000.0) AS popn_per_sqkm

FROM nyc_census_blocks AS c INNER JOIN nyc_neighborhoods AS n ON ST_Intersects(c.geom, n.geom)

WHERE n.name = 'Upper West Side' OR n.name = 'Upper East Side'

GROUP BY n.name, n.geom;

Now use spatial SQL to answer the following questions (report your SQL statements and results):

Q16: What subway stations are in ‘East Village’ neighborhood? What subway route is it on?

Geog 676 Spatial Database LAB3, UW-Madison, Qunying Huang Page 18 of 18

Q17: What are all the neighborhoods served by the ‘A-train’ line? (Hint: routes field in

nyc_subway_stations table has values like ‘A’)

Q18: If there is a terrorist attack within the ‘central park’ neighborhood. How many people had to be

evacuated?

Q19: What are the population density (people / km
2
) of the ‘Upper East Side’, ‘Upper West Side’ , ‘Lower

East Side’ neighborhood? (Hint: use keyword IN)

Q20: What neighborhood has the highest population density (persons/km
2
)? The lowest? There are 1,000,000

m
2
 in a km

2
.

Useful SQL
The pattern for a spatial join is commonly

SELECT a.field, b.field

FROM table_a AS a

JOIN table_b AS b

ON ST_Something(a.geom, b.geom)

WHERE a.field = ‘SOMETHING’;

For spatial joins that aggregate results over the whole set, the pattern is commonly

SELECT Sum(a.field), b.field

FROM table_a AS a

JOIN table_b AS b

ON ST_Something(a.geom, b.geom)

WHERE a.field = ‘SOMETHING’

GROUP BY b.field;

Note the aggregate function around one term and the grouping on the other.

Reference:
Introduction to PostGIS:

http://workshops.boundlessgeo.com/postgis-intro/index.html

Getting Started With PostGIS: An almost Idiot's Guide:

http://www.bostongis.com/PrinterFriendly.aspx?content_name=postgis_tut01

A web service to get srid from the .prj file: http://prj2epsg.org/search

http://workshops.boundlessgeo.com/postgis-intro/index.html
http://workshops.boundlessgeo.com/postgis-intro/index.html
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCUQFjAA&url=http%3A%2F%2Fwww.bostongis.com%2FPrinterFriendly.aspx%3Fcontent_name%3Dpostgis_tut01&ei=BGHfUv6OD8LNsQSmr4LYCw&usg=AFQjCNHNIYBkSDr7Q0L-EIbqdiMd58PVbw&sig2=eduZ701WoNQRyYyJ8AP4eg&bvm=bv.59568121,d.aWc
http://www.bostongis.com/PrinterFriendly.aspx?content_name=postgis_tut01
http://prj2epsg.org/search

