
Geog 676 Spatial Database LAB2, UW-Madison, Qunying Huang Page 1 of 12

Lab 2: PostgreSQL Tutorial II: Command Line

In the lab 1, we learned how to use PostgreSQL through the graphic interface, pgAdmin. However,

PostgreSQL may not be used through a graphical interface. This tutorial will tell you how to manipulate

the PostgreSQL database through shell command line.

Objectives

The goals for you to take away from this lab are:

 Get familiar with PostgreSQL shell commands;

 Learn the procedure of using shell commands and SQL statements to create, manipulate, backup

and restore databases;

 Practice methods for loading data, querying and deleting data in a database.

Data and SQL scripts

Please download the data and scripts (Lab2.zip) in the Lab section at Learn@UW system. If you are using

Windows, put it under C:/lab2/ (if you do not have a C:/lab2 folder, please create one). Unzip the data.

Please go through Part I: Exercise Tutorial and then finish tasks listed in Part II: Lab Assignment.

Part I: Exercise Tutorial

1. Getting a PostgreSQL command prompt

 To get a command shell that is set up to run these tools on the Lab machines, go to the file directory

(e.g., c:/lab2/, in this case), run the PostgreSQL shell launcher script with file name

"start_postgresql_shell.bat". You should only run this script from a windows machine (or some

computer set up the same way) by double clicking the script.

 To test that the script has set up the tools paths correctly, type psql -? at the prompt, and hit Enter.

You should see a usage message similar to the following:

2. Creating/Deleting a PostgreSQL database

Just as in other DBMS, such as SQL Server, your tables must be placed in a database, which you must

create. To create a database named testdb, do the following:

1) Make sure PostgreSQL is running (by default, PostgreSQL is running once Windows boots up), and

open a PostgreSQL shell as above.

Geog 676 Spatial Database LAB2, UW-Madison, Qunying Huang Page 2 of 12

2) Use the createdb command to create the database (enter “postgres” when prompt for password):

>createdb –U postgres testdb

3) Now, if you open pgAdmin III and connect to the local database server “PostgreSQL 9.3

(localhost:5432)”, you will find that the testdb was created.

4) To delete (or drop) a database named testdb, do the following:

> dropdb –U postgres testdb

However, you may get the following error.

This means that your pgAdmin III is still connecting and using this database. So you should disconnect it

first by:

 Right click the database and select Disconnect database

Geog 676 Spatial Database LAB2, UW-Madison, Qunying Huang Page 3 of 12

Then you can try to delete testdb again.

PostgreSQL is case-sensitive when looking up database and table names. However, PostgreSQL

automatically lowercases all names given in SQL code, so for you, the case-sensitivity should only affect

non-SQL code that needs to know the database name, including:

 The createdb command;

 The psql SQL query tool (discussed below);

 Any Java or other program code that connects to the database.

In such code, always spell the database name exactly as you created it, respecting case.

Question 1 (5 pts): Create a database named “gisdb” with createdb command. Take a screenshot

of your command line window, and a screenshot of pgAdmin III showing the created database.

Tip: Alt + PrtScn can get you a screenshot of the current window.

3. Starting the SQL Command Line Terminal (psql)

psql is a terminal-based front-end to PostgreSQL. It enables you to type in queries interactively, issue

them to PostgreSQL, and see the query results. Alternatively, input can be from a file. In addition, it

provides a number of meta-commands and various shell-like features to facilitate writing scripts and

automating a wide variety of tasks. The following steps describe how to start the psql.

 Once PostgreSQL is running, you can run psql by opening a PostgreSQL shell command prompt

through the method mentioned in Section 1 “Getting a PostgreSQL command prompt” and typing:

>psql –U postgres gisdb

where postgres is the user account (in this case the database superuser, you can always change to other

user account). Being a superuser means that you are not subject to access controls. For the purposes of

this tutorial that is not of importance. gisdb, created in the previous section, is the name of the database

Geog 676 Spatial Database LAB2, UW-Madison, Qunying Huang Page 4 of 12

you want to use. Of course, you can also use “firstDB” as the database name (If you omit the database

name, psql defaults to accessing the database “postgres”.)

The line gisdb =# is the prompt for SQL statements which are sent to the database server, or non-SQL

commands interpreted by psql. It indicates that psql is listening to you and that you can type SQL queries

into a work space maintained by psql. Here, "gisdb” again is the name of the database; it may differ on

your system if you use different database name.

In addition, you can also start the psql through:

 Click Windows Start, select Program-> Development-> PostgreSQL 9.3 -> SQL shell (psql). The

SQL command line terminal opens.

 Enter the information for the successive prompts or accept the defaults as below by hitting

Enter key.

 Try out these commands in PostgreSQL shell command prompt:

Geog 676 Spatial Database LAB2, UW-Madison, Qunying Huang Page 5 of 12

The psql program has a number of internal commands that are not SQL commands. They begin with the

backslash character, "\". Here are some common commands you can practice first before you go to the

next section.

Commands Description Commands Description

\? Get a help message \do List operators

\h <cmd> help on a SQL command;

replace<cmd> with the actual

command

\i <filename> Execute commands read from the

file name <filename>

\q Quit psql \c <dbname> connect to the db with name as

<dbname>

\l list all database

\r Reset the buffer(discard any

typing)

\dt list all the tables \dT List types

As the message suggests, you can get help on the syntax of various PostgreSQL SQL commands by

typing \h. You can exit psql by typing \q and hitting Enter (note the lack of a semicolon; this is required

because \q is not an SQL statement and is not interpreted at the server).

\l can list all database as below.

Here we can see that “gisdb” we created before is included as well.

Geog 676 Spatial Database LAB2, UW-Madison, Qunying Huang Page 6 of 12

\c can connect to different database.

We can create a database through the psql command as well:

gisdb=#create database testdb;

We can delete the database by the command:

gisdb=#drop database testdb;

If you run the command \l to list all database again, you will find the database testdb is gone.

4. Create/Delete tables for your database

We will use three tables for this exercise including: country, city and river. The schema of the database is

shown below:

Country (name: varchar (35), cont: varchar (35), pop: real, GDP: real, life_exp: real, shape: char(15))

City (name: varchar (35), country: varchar(35), pop: real, capital: char(1), shape: char (15))

River (name: varchar(35), origin: varchar(35), length: integer, shape: char(15))

In the country table, attribute name is country name, cont means the continent of the country, GDP

represents gross domestic product, and life_exp is the life expectancy. The shape attribute indicates the

geometry of a country, a city or a river.

The city table has five attributes: name, country, pop, capital, and shape. The country attribute is the

name of the country that the city belongs to. Capital is a fixed character type, with length as 1, and two

values (“Y” and “N”): a city will have a value “Y” for the attribute if it is the capital of the country, or “N”

if it is not.

Geog 676 Spatial Database LAB2, UW-Madison, Qunying Huang Page 7 of 12

In the river, the origin attribute specifies the country where the river originates.

For each table, note that an underlined attribute is a primary key. The concept of primary key will be

introduced in the relational database design. Here, just keep in mind that it is used to uniquely identify

each record in the table.

Question 2 (5 pts): What’s the type of the schema presented here? (Please refer to the lecture 2 for the

types of schema at different database design level).

4.1 Create tables

In a relational database, the creation and deletion of the tables are specified in the DDL component of

SQL. For example, the country schema introduced is defined below in SQL.

CREATE TABLE country(

name varchar(35),

cont varchar(35),

pop real,

gdp real,

life_exp real,

shape char(15),

primary key (name)

);

The CREATE TABLE clause is used to define the relational schema. The name of the table is country.

 Copy and paste the above SQL clause to create table country at the psql prompt

 Copy and paste the below SQL clause to create table river at the psql prompt

CREATE TABLE river(

name varchar(35),

origin varchar(35),

length int,

shape char(15),

primary key (name)

);

Question 3 (5 pts): Following the DDL statements to create table country and river, create table city

based on the city schema. Write down the DDL statements.

Geog 676 Spatial Database LAB2, UW-Madison, Qunying Huang Page 8 of 12

Now after you finished creating the three tables, you can use the command “\dt” to list all the tables.

4.2 Delete tables

Tables no longer in use can be removed from the database using drop table command.

5. Add data to your database

After creating the tables as specified in DDL, it is time to add some data. This task, which is often called

"populating the table", is done in the DML component of SQL. We can use SQL insert clause to create

new rows for a table. For example, we can insert one row to table country, city and river respectively:

INSERT INTO country(name, cont, pop, gdp, life_exp, shape)

VALUES('Canada', 'NAM', 30.1, 658.0, 77.08, 'Polygonid-1');

INSERT INTO city(name, country, pop, capital, shape) VALUES('Havana', 'Cuba', 2.1, 'Y', 'Pointid-1');

INSERT INTO river(name, origin, length, shape) VALUES('Rio Parana', 'Brazil', 2600, 'LineStringid-1');

Note here if you add a row with a value for the attribute specified as the primary key already exists in the

database, your statement will be rejected by the DBMS because of the primary key constraint specified in

the DDL. This means that the value of the primary key attribute should be unique for each row, so it can

Geog 676 Spatial Database LAB2, UW-Madison, Qunying Huang Page 9 of 12

be uniquely identify each row in the table. For example, we insert another row in the river table with

Name = "Rio Parana" again:

INSERT INTO river(name, origin, length, shape) VALUES('Rio Parana','Brazil',2500,'LineStringid-1');

The DBMS will generate and return errors to us as follows:

One fantastic way you may use frequently in future to load many data into the PostgreSQL is through a

text file. This can be done with the command "copy"
1
. The data read or written is a text file with one line

per table row. Columns in a row are separated by the delimiter character. For example, we can use the

following command to load the data from a text file, named as "city.txt", into the city table:

copy city ("name", "country", "pop", "capital", "shape") from 'c:\lab2\city.txt' WITH DELIMITER

AS ',' CSV QUOTE AS '''';

or

copy city (name, country, pop, capital, shape) from 'c:\lab2\city.txt' WITH DELIMITER AS ',' CSV

QUOTE AS '''';

Question 4 (8 pts): Now create a text file, following the similar format as the "city.txt" file, to keep the

following rows for the country table, and use the copy command to load them to country table. Write

down your copy command, and take a screenshot in pgAdmin III showing the resulted country table

populated with records.

name cont pop life_exp gdp shape

'Canada' 'NAM' 30.1 658 77.08 'Polygonid-1'

'Mexico' 'NAM' 107.5 694.3 69.36 'Polygonid-2'

'Brazil' 'SAM' 183.3 1004 65.6 'Polygonid-3'

'Cuba' 'NAM' 11.7 16.9 75.95 'Polygonid-4'

'USA' 'NAM' 270 8003 75.75 'Polygonid-5'

'Argentina' 'SAM' 36.3 348.2 70.75 'Polygonid-6'

6. Delete data from database

The basic form of SQL statement (DML) to remove rows from the table is as follows:

delete from table where <conditions>;

For example, the following statement removes the row from the table river that we insert above:

 delete from river where name='Rio Parana';

1
http://www.postgresql.org/docs/8.1/static/sql-copy.html

Geog 676 Spatial Database LAB2, UW-Madison, Qunying Huang Page 10 of 12

Question 5 (5 pts): Remove the row with country name "Mexico" from country table. Write down your

command, and take a screenshot of your command line window.

7. Querying data with psql

Once the database schema has been defined in the DDL component and the tables populated, queries can

be expressed in SQL to extract relevant subsets of data from the database. The basic syntax of an SQL

query is extremely simple:

Select <column-names> from <table-names> where <conditions>;

Now let's list all the countries and continent they belong to in the country table by:

select name, cont from country;

8. Running queries from an SQL file

We can use psql to run SQL code from an external file as well as from interactive input. This can be done

with the \i psql command:

gisdb=#\i sqlfile

Now let’s delete all records from the city table:

delete from city;

and load the data from SQL file “load-city.sql”, which you downloaded from the Learn@UW system, and

put under c:/lab2/:

gisdb=#\i c:/lab2/load-city.sql

Geog 676 Spatial Database LAB2, UW-Madison, Qunying Huang Page 11 of 12

Question 6 (6 pts): List all the cities name and the country they belong to in the city table. Write down

your SQL statement, and take a screenshot of the command line window showing your query results.

Under the same file directory, you will find another SQL file, named “load-river.sql”, which includes the

insert statements for adding rows to the river table.

Question 7 (8 pts): Run “load-river.sql”, and list all rivers name and country where they originate. Write

down your SQL statement, and take a screenshot of the command line window showing your query

results.

Note that the sqlfile much under your current working directory, where you put your "c:/lab2". Otherwise,

you must put absolute pathname for your SQL file. In PostgreSQL, an absolute pathname

like C:\subdir\query.sql must be written either by doubling the backslashes, as in 'C:\\subdir\\query.sql',

or turning them into forward slashes, as in 'C:/subdir/query.sql'.

Alternatively, you can run psql with the query file directly from the shell:

>psql -U dbuser -f sqlfile dbname

Now, let’s load more data to the country table by running a series of insert statement saved in the text file

“load-counrty.sql” with the command:

>psql -U postgres -f load-country.sql gisdb

Question 8 (8pts): Why PostgreSQL returns errors as above? Try to remove all rows in the country table

and load the country data from the shell again. Write down your SQL statement to remove the rows, and

take a screenshot of the command line window showing “load-counrty.sql” was successfully executed.

9. Backup/restore a PostgreSQL database

9.1 Backup a database

PostgreSQL provides the utility program pg_dump for database backup. The idea behind this dump

method is to generate a text file with SQL commands that, when fed back to the server, will recreate the

http://www.postgresql.org/docs/9.1/static/app-pgdump.html

Geog 676 Spatial Database LAB2, UW-Madison, Qunying Huang Page 12 of 12

database in the same state as it was at the time of the dump. To dump the database you can use the

command:

>pg_dump –U postgres gisdb > gisdb.sql

where gisdb is the database name, and gisdb.sql is the output text file with SQL commands.

Now you can go to your current working directory, to check the content of “gisdb.sql”.

10.1. Restore a database

The text files created by pg_dump are intended to be read in by the psql program. The general command

form to restore a dump is

>psql -U username dbname < infile

Part II: Lab Assignment

Answer Question 1 to Question 8 as specified in Part I: Exercise Tutorial. Write up your lab report and

turn it in as a single .pdf file to Dropbox on Learn@UW.

Special tips: on Windows, Alt + PrtScn can help you get a screenshot of the current window.

Reference:

 PostgreSQL 9.3 Documentation (http://www.postgresql.org/docs/9.3/static/index.html)

o II: The SQL Language

o VI. Reference II. PostgreSQL Client Applications

 Shekhar, S., & Chawla, S. (2003). Spatial databases: a tour (Vol. 2003). Upper Saddle River, NJ:

prentice hall.

http://www.postgresql.org/docs/9.3/static/index.html
http://www.postgresql.org/docs/9.3/static/sql.html
http://www.postgresql.org/docs/9.3/static/reference-client.html

