
e

Geog 676 Spatial Database LAB1, UW-Madison, Qunying Huang Page 1 of 11

Lab 1: PostgreSQL Tutorial I: GUI (pgAdmin III)

This is a basic introduction into pgAdmin III, the comprehensive database design and management

console for Postgres databases. You'll also be introduced to the fundamental features in pgAdmin and be

ready to start creating databases, entering data, and building multi-table queries using the Graphical

Query tool all without writing any SQL.

Please first go through Part I: Exercise Tutorial, then finish tasks listed in Part II: Lab Assignment.

Part I: Exercise Tutorial

1. Getting started with pgAdmin III

Once pgAdmin III has been installed, a server will be needed to be connected. In our case, we will use “localhost” as

the server.

 Right click “PostgresSQL 9.3” at the left “Object browser” panel to connect local host server, and select

“Connect”, and enter “postgres” as the password.

The server should now be shown in the left hand box and you can navigate your way round your database tables. For

the first time using the PostgreSQL, only two database available, including a spatial database (postgis_21_sample)

created while installing the PostGIS, and a default database named postgres on each PostgreSQL server installation.

2. Create your first DB

http://stackoverflow.com/questions/2370525/default-database-named-postgres-on-postgresql-server

e

Geog 676 Spatial Database LAB1, UW-Madison, Qunying Huang Page 2 of 11

 Right click Servers(1)->PostgreSQL 9.3 (localhost: 5432) ->Databases(2)

 Enter “firstDB” as the DB name, choose “postgres” as owner, and

click “OK” as the right figure.

 The “firstDB” will show up.

3. Add tables to the DB through the GUI

In this practice, we will add a table to firstDB to record weather data in various

cities across the country. To do this, we need:

 Right click firstDB->Schemas->public->Tables, to bring up create “New

Table” dialogue

 Set the table name as “cities”

 Add fields to the table: Click “Columns” tab, click “Add” button, and enter “name” in the Name text box,

“Data type” as character and “Length” as 80

e

Geog 676 Spatial Database LAB1, UW-Madison, Qunying Huang Page 3 of 11

 Add one more field to the table: click “Add” button again, and enter “location” in the Name text box, and “Data

type” as “Point”.

 Finally, let’s add one simple constraint for the table. This would be our primary key, which would prevent

duplicated cities from being add to the table. This can be done by:

 Click “Constraints” tab -> “Add” button. A new dialogue for adding a new primary key will show up. Enter

the “pk_city_name” as the key name, click “Columns”, and connect the key to a city name field of the table we

created by selecting “name”. Then we will see that our primary key is created and added in the panel.

e

Geog 676 Spatial Database LAB1, UW-Madison, Qunying Huang Page 4 of 11

Now we have specified the table name, column names, their types, and a simple constraint (primary key) to

prevent from duplicated records with the same city being added to the table. To the result of our work, you can

go to the object browser and expand the table “cities”.

e

Geog 676 Spatial Database LAB1, UW-Madison, Qunying Huang Page 5 of 11

4. Add tables to the DB through the SQL Query Tool

Besides to add the table step by step through the graphic use interface (GUI), we can also create tables for the

database through the script. To query and operate the data within PostgreSQL, an SQL query tool is necessary and

provided in pgAdmin III. Let’s see a shortcut to create a table with SQL query tool.

 Clicking the SQL icon will produce another window in which the SQL query should be written.

Following figure is a screenshot of the SQL window where the queries are written.

Following are SQL command that we can use to create a weather table:

DROP TABLE IF EXISTS weather;

CREATE TABLE weather (

 city varchar(80) NOT NULL,

 temp_lo int, -- low temperature

 temp_hi int, -- high temperature

 prcp real , -- precipitation

 date date NOT NULL,

 CONSTRAINT pk_city_date PRIMARY KEY (city, date)

)WITH (

 OIDS=FALSE

);

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can type the

command aligned differently than above, or even all on one line. Two dashes ("--") introduce comments. Whatever

follows them is ignored up to the end of the line. SQL is case insensitive about key words and identifiers, except

when identifiers are double-quoted to preserve the case (not done above).

“varchar(80)” specifies a data type that can store arbitrary character strings up to 80 characters in length. “int” is the

normal integer type. “real” is a type for storing single precision floating-point numbers. “date” should be self-

SQL icon

e

Geog 676 Spatial Database LAB1, UW-Madison, Qunying Huang Page 6 of 11

explanatory. (Yes, the column of type date is also named date. This might be convenient or confusing — you

choose.)

PostgreSQL supports the standard SQL types int, small int, real, double precision, char(N), varchar(N), date, time,

timestamp, and interval, as well as other types of general utility and a rich set of geometric types. PostgreSQL can

be customized with an arbitrary number of user-defined data types. Consequently, type names are not syntactical

key words, except where required to support special cases in the SQL standard.

 Now let’s copy the SQL to the “SQL editor” window. Before you execute the command by click “Execute

pgScript” button, you need to make sure that you are connecting to the correct database (DB) server and

DB as well. In our case, our DB name is “firstDB”.

If the connection is not to the “firstDB”, you can scroll down the DB connection drop box as below and select

“new connection”. A DB connection dialogue will show up and you can select the appropriate one.

e

Geog 676 Spatial Database LAB1, UW-Madison, Qunying Huang Page 7 of 11

 Now let’s execute the command by click “Execute pgScript” button.

 Now back to Object browser and right click “Tables”, select Refresh, you will notice our new weather table

with 5 columns and one constraint (primary key) created.

5. Add data to the table

Now we have successfully created two tables, it is time to add some data.

 Manually add data entries in a tabular form. For example, we can enter data entries for cities table, by right

click “cities” -> “view data” -> “View Top 100 rows”.

 Enter the “Madison, (89.40, 43.07)” as name and location for one row, and add “San Francisco, (-122.43,37.78)”

as another row as below (you might need to click the Refresh button after enter each row).

e

Geog 676 Spatial Database LAB1, UW-Madison, Qunying Huang Page 8 of 11

However, this is not efficient way to enter the data. It is most useful for adding simple test data. On the other hand,

we can use SQL query tool again, to enter data in batch. Following is a SQL command to insert three records to the

weather table.

INSERT INTO weather VALUES

('San Francisco', 46, 50, 0.25, '1994-11-27'),

('San Francisco', 43, 57, 0.0, '1994-11-29'),

('Madison', 32, 54, 0.0, '1994-11-29');

 Now let’s erase SQL commands in the SQL Editor panel by clicking the ‘clear edit window’ tool bar.

 Copy the SQL to the “SQL editor” window, and click “Execute pgScript” button to run the command

e

Geog 676 Spatial Database LAB1, UW-Madison, Qunying Huang Page 9 of 11

If you open the weather table in the Object browser panel, you will see that three records are added.

6. Query the data through Graphical Query Builder

Now we have the data in multiple tables, we can use query tool to view all our whether data. In today’s exercise, we

will learn to use Graphical Query Builder rather than SQL Editor to build the SQL commands to view the data.

The Graphical Query Builder (GQB) is part of the Query Tool which allows you to build simple SQL queries

visually
1
.

 Click “SQL query tool” to open the query window, and erase SQL commands in the SQL Editor panel by

clicking the “clean edit window”tool bar so we can have a clean window. Then click “Graphical Query

Builder”

 Open “Schemas”-> “public”. Drag the cities onto the graphic query builder canvas. You will see a pane of

“cities” showing up in the canvas. Drag the “weather” table onto the canvas as well. Now you can select the

information you want to view from both tables. Under the cities pane, you can check “name”, “location”, and

“check temp_lo”, “temp_hi”, and “date” from the weather table.

1
 http://www.pgadmin.org/docs/dev/gqb.html

http://www.pgadmin.org/docs/dev/gqb.html#gqb

e

Geog 676 Spatial Database LAB1, UW-Madison, Qunying Huang Page 10 of 11

 Now you can do a join between the two tables so we can get the data from both tables by linking the name in

the cities table to the city in the weather table. To create joins between relations, drag a column (“name” column

in the cities table) from one relation onto another (“city” column in the weather table).

 Now run the query, and we can see down in the output pane, including San Francisco and Madison location and

weather records joining from both table.

e

Geog 676 Spatial Database LAB1, UW-Madison, Qunying Huang Page 11 of 11

Part II: Lab Assignment

Task 1: Insert at least two more records into “cities” and “weather” tables. You can make up any city and

weather data. (25 pts)

Task 2: Use Graphical Query Builder to perform a query to list all the cities each with name, location, temp_lo,

temp_hi, prcp, and date. (25 pts)

Directions: explain how you complete the tasks in texts, along with screenshots, and/or SQL code, to indicate

your steps and results if necessary. Please turn in your lab report as a single .pdf file. Submit this file to the

Dropbox at Learn@UW by the beginning of your lab period in one week.

Reference:

 Graphical Query Builder (GQB): http://www.pgadmin.org/docs/dev/gqb.html

 How To Create A Postgres Database Using pgAdmin : https://www.youtube.com/watch?v=1wvDVBjNDys

http://www.pgadmin.org/docs/dev/gqb.html
https://www.youtube.com/watch?v=1wvDVBjNDys

