

 Use the D3 library to coordinate interactions across multiple visualizations
 Learn about the GeoJSON and TopoJSON formats
 Implement sequence and retrieve for coordinated, multivariate visualization

This lab is worth 40 points toward the Lab Assignments evaluation item. A grading rubric
is provided at the end of the lab to inform your work.

 March 21st: Lab #3 Assigned //collaboration begins
 April 4th: Work Period //input & feedback from collaborator
 April 11th: Work Period //input & feedback from collaborator
 April 18th: Lab #3 Due //submission deadline

You have decided to compete for an ENGAGE Innovation Award, a UW-Madison program run by
DoIT promoting the use of technology for research and teaching (http://engage.wisc.edu/). This
specific Innovation Award cycle addresses the use of information visualization for the purpose of
scientific exploration. Parameters of the Innovation Award require you to work with a domain
expert to develop a visualization of complex and multivariate information in order to facilitate the
generation of new insights about your collaborator's core research interests. Given your expertise
in engineering successful user experiences with map-based visualizations, you plan to team up with
a colleague of yours in Geography to design a highly interactive and coordinated geovisualization
application, with the goal of supporting hypothesis generation and knowledge construction about
your colleague's spatial research. The application will load enumerated information, allowing for
the interactive identification, comparison, ranking, association, and delineation of multiple
attributes as they vary across space. The selection of winners is based on a proof-of-concept
application allowing for exploration of a sample information set that you have assembled. The
proof-of-concept application should reveal new insights regarding notable outliers, anomalies,
patterns, trends, correlations, and clusters; submissions will be chosen based on the potential for
expanding these proof-of-concept interfaces to unlock additional geographic insights.

Your visualization must include a choropleth map with at least 15 enumeration units and a PCP that
represents at least 5 numerical variables collected for these units. The enumeration units cannot be
at the same geographic location and/or cartographic scale as your Lab #1/#2 application.

http://engage.wisc.edu/

In Labs #1 and #2, you learned how to use JavaScript to create a Leaflet slippy map, load and
process external information, style and resize point markers, skin UI controls, and implement
interaction operators using JavaScript, jQuery, and jQueryUI. While tile-based slippy maps speed
map browsing considerably and are easy to make, they present significant constraints on
cartographic design. Among the largest of issues is restriction in map projection. Slippy maps make
use of cylindrical map projections to optimize the processing and serving of map tiles. Most existing
tilesets are provided in the Web Mercator projection, which is conformal (acceptable for
navigation-focused reference mapping) and not equivalent (a property that should be preserved for
many thematic maps, such as choropleth, dot density, and isoline when using color shading
between intervals). Because you are making a choropleth map as one of the coordinated views, you
should not rely on a non-equivalent tile service for your basemap.

Additionally, maps used for exploration—or Geovisualization—require implementation of multiple,
linked information graphics that can be hard to create with JavaScript or jQuery alone. Luckily,
there are a growing number of information visualization libraries that can be used in concert with
mapping libraries to create interesting, coordinated visualizations. (for some examples, see:
http://www.idea.org/blog/2012/10/25/great-tools-for-data-visualization). In Lab #3, you will be
using the D3 visualization library to build your first coordinated visualization (http://d3js.org). D3,
or data-driven documents, is a JavaScript library pioneered and maintained by Mike Bostock of the
NYTimes (http://bost.ocks.org/mike); the D3 library grew from prior collaborations on the
Protovis library between Bostock and Professor Jeffrey Heer of Stanford University. Increasingly
recognized as a leading data visualization library, D3 is robust, elegant, stable, and expanding
rapidly. It simplifies loading and interacting with information, extending the dot syntax used by
jQuery. It draws all graphics as client-side (in the browser) vectors using SVG (return to Lab #1 for
details about SVG). The map visualizations in D3 can be reprojected using any class, case, aspect,
and centering thanks to the work of freelance developer Jason Davies and the proj4.js library of map
projections (http://trac.osgeo.org/proj4js/).

The D3 library is an open-source project on GitHub that seems to evolve daily
(https://github.com/mbostock). The goal of Lab #3 is to provide you a broad introduction to key
concepts in using the library; the great wealth of the library could cover a series of advanced
courses on Interactive Cartography and Geovisualization. The following introduction to D3 extends
from two excellent online learning materials: (1) Mike Bostock's "Let’s Make a Map" tutorial
(http://bost.ocks.org/mike/map), and (2) developer Scott Murray's e-book "Interactive Data
Visualization for the Web” (http://ofps.oreilly.com/titles/9781449339739/index.html). Refer to
these documents for additional background and guidance as you complete Lab #3.

As with Lab #1, the first step towards completing the challenge is assembly of an appropriate
information set for geographic visualization; for Lab #3, the information set will be multivariate
(i.e., multiple attributes enumerated over the same set of spaces) rather than spatiotemporal. While
you will continue to use the .csv format to hold your attribute information (as with Labs #1 and #2),
you will make use of the .json format to hold your geographic information. JSON stands for
JavaScript Object Notation and quickly has become a standard format for information loaded into

http://www.idea.org/blog/2012/10/25/great-tools-for-data-visualizationhttp:/www.idea.org/blog/2012/10/25/great-tools-for-data-visualization
http://d3js.org/
http://bost.ocks.org/mike
http://trac.osgeo.org/proj4js/
https://github.com/mbostock
http://bost.ocks.org/mike/map
http://ofps.oreilly.com/titles/9781449339739/index.html

and interpreted by a browser. The .json format is leveraged in Lab #3 due to the use of enumeration
units (polygons) rather than markers (points) in the choropleth map (although .json can be used for
markers as well).

First, prepare the attribute information in a .csv file. Common agencies that provide enumerated,
multivariate information include FedStats (http://www.fedstats.gov/), many US Federal Bureaus,
and the World Bank (http://data.worldbank.org/); consider consulting with Jaime Stoltenberg in
the Robinson Map Library to acquire specific multivariate information. Regardless of source, the
format of the multivariate information set should be similar to the spatiotemporal information set
used for Labs #1 and #2; unique enumeration units should be included as rows and unique
attributes should be included as columns. Figure 1 provides an example multivariate information
set for provinces in France. Remember that enumerated information must be normalized when
depicted using a choropleth map in order to account for variation in the size/shape of enumeration
units. After keying the raw information into the attribute table, consider how best to normalize it
for the choropleth map (if it is not already normalized). Return to your G370 notes regarding
discussion on normalizing information for choropleth mapping.

Figure 1: An Example Multivariate Information Set. In the table, the enumeration units should
be included as rows and the attributes included as columns; for simplicity, normalize the
information in the .csv. Note: The above information is meaningless.

Next, prepare the geographic information in a .shp file for subsequent conversion to .json. Begin by
finding a .shp file that provides geometry for your enumeration units as well as any additional
context information you wish to overlay in the choropleth map. Web-based repositories containing
enumeration units in the vector .shp format include the Esri Data Bank, Geocommons, and Natural
Earth. The following instructions make use of the Admin 0 and Admin 1 small-scale cultural files
included in Natural Earth (http://www.naturalearthdata.com/) to produce two .shp files for the
choropleth map: (1) FranceProvinces.shp (extracted from Admin 1) containing the enumeration
units for a choropleth map and (2) EuropeCountries.shp (extracted from Admin 0) for basemap
context. One column in the .csv and one column in the .shp must match to join the files together; in
the Figure 1 example, “adm1_code” has been copied from Natural Earth into the .csv. Note: The
column you use to join the .csv and json CANNOT include records that start with a number or
reserved character, as these are used as object names when loaded into the browser.

http://www.fedstats.gov/
http://data.worldbank.org/
http://www.naturalearthdata.com/

It is recommended that you do some processing of the .shp file in ArcMap before converting it to
.json. First, delete any unneeded geographic features and attribute columns from .shp file to reduce
the overall file size. Next, simplify your linework as much as possible, as additional geometry nodes
slow the loading and interaction of your geovisualization; you may use either the ArcToolbox
simplification tools or MapShaper (http://mapshaper.com) to remove points from your .shp files
(return to Lab #1 from G370 to refresh your memory on simplification/generalization). It is
important to note that ArcGIS and the .shp file format can be bypassed altogether using the open-
source GDAL/OGR python library (installed on all lab machines as part of OSGeo4W and free to
download); for additional details, see: http://www.gdal.org/ogr/drv_geojson.html.

There are two spatially-enabled variants of the .json format: GeoJSON and TopoJSON; both variants
continue to make use of the .json extension. Both the GeoJSON and TopoJSON formats structure the
geometry and attribute values of a given map feature (here, a polygon) as a set of properties
associated with a JavaScript object; therefore, both geographic and multivariate information are
placed into the DOM in a similar manner when loaded into the browser. The GeoJSON format
structures the geographic information for each polygon as an array of nodes (lat/long coordinate
pairs) defining the complete outer boundary of the polygon. In contrast, the TopoJSON format—
pioneered by D3’s Mike Bostock in early 2013—structures the geographic information for each
polygon as a series of arcs (lines connecting a pair of nodes), and stores the pair of nodes
constituting each arc in a separate JavaScript object. The result of the TopoJSON format is that
topology, or shared arcs/edges, is explicit. As you learned in G377, the topological format is more
efficient, as the nodes for shared edges are defined in the file only once and therefore drawn in the
browser only once. We therefore will use the TopoJSON format for Lab #3, although GeoJSON
remains common across web mapping applications in part because many plugins do not yet
support the newer TopoJSON format.

Convert your processed .shp files containing the polygon geometry to .json using the web service
Shape Escape (http://www.shpesape.com). Initially developed by Josh Livni of Google to aid
conversion of .shp files to Google Fusion Tables, the service recently was updated to include
conversion of .shp files to GeoJSON and TopoJSON. To use Shape Escape, first compress all of the
constituent files of your collected .shp files into a single .zip file. It is not necessary to separate
different .shp files into different .zip files; in the following example, the processed
FranceProvinces.shp and EuropeCountries.shp are compressed to a single europe.zip file.

Once compressed, navigate to Shape Escape, select the "shp2geoJSON/topoJSON" option (Figure
2a) and upload your .zip file when prompted (Figure 2b). Upon upload, you are redirected to a
Google Map view with a sidebar on the left that lists the new files created from your .shp files
(Figure 2c). There should be one GeoJSON listed for each .shp file included in the .zip and a
TopoJSON at three levels of simplification (described as “precision”); to improve loading and
interaction. Click "display" under any of these files to preview the geometry on the map. Click
"download" to redirect to a page that contains the GeoJSON or TopoJSON definition (Figure 1d).
Click the “with attributes” option if you want to preserve all attributes from the .shp files in the
TopoJSON; see the Shape Escape FAQ if you want to select only particular attributes. Copy the
contents of the page (Ctrl+A/Ctrl+C) and paste (Ctrl+P) into NotePad++, saving the file with the
extension .json (e.g., europe.json).

http://mapshaper.com/
http://www.gdal.org/ogr/drv_geojson.html
http://www.shpesape.com/
http://www.shpescape.com/mix/help

Figure 2. Using Shape Escape (http://www.shpescape.com) to convert .shp to .json

http://www.shpescape.com/

Before moving on, inspect the difference between the GeoJSON and TopoJSON formats. Starting
with GeoJSON, notice that the first character is a curly brace ({), denoting the start of a JavaScript

object (hence "JavaScript OBJECT Notation"). In each GeoJSON, the type is a
featureCollection. Each object contains a features array of objects, the first object
holding its geometry (an array of nodes) and the second holdings its properties or attributes.
Incidentally, Leaflet also can create a feature group from a GeoJSON, a solution that may be useful
for the final project (see http://leafletjs.com/examples/geojson.html).

Next, look at the TopoJSON format. The overall type is now Topology, and instead of features
there are geometries with arcs. Instead of one featureCollection, there are one or more
geometryCollections stored as objects, with each object corresponding to one of the
input .shp files. Important: You need to rename manually each object from the random string of
letters/numbers assigned to it by Shape Escape to names that you can reference in your code (e.g.,
"FranceProvinces" and "EuropeCountries" in Figure 3). For more on the TopoJSON
specification, see https://github.com/mbostock/topojson/wiki.

Figure 3. Manually rename the objects in your TopoJSON file for reference in your code.

http://leafletjs.com/examples/geojson.html
https://github.com/mbostock/topojson/wiki

With your TopoJSON processed, it is now time to start building your coordinated visualization! As
in the first two labs, create a local directory for Lab #3 that includes folders named "css", "data",
“img”, and "js". Then, create three new files named index.html (root level), style.css (css folder), and
main.js (js folder); save your newly created .csv and .json files into the data folder. Finally, add the
Lab #1 basic HTML5 boilerplate into your index.html file, linking to your newly created stylesheets
and scripts (Code Bank 1).

After configuring your directory, acquire two existing .js files from Bostock’s Github account: (1)
d3.v3.js (https://github.com/mbostock/d3) containing the D3 visualization library and (2)
topojson.js for parsing your TopoJSON file (https://github.com/mbostock/topojson/). Save these
files to your js folder and link to them in index.html (CB1: 11-13). Again return to Lab #1 for details
about downloading source code from Github; remember, you only should include the required .js
source files in your final build.

__

1 <!DOCTYPE HTML>

2 <html>

3 <head>

4 <meta charset="utf-8">

5 <title>My Coordinated Visualization</title>

6

7 <!--main stylesheet-->

8 <link rel="stylesheet" href="css/style.css" />

9 </head>

10 <body>

11 <!--libraries-->

12 <script src="js/d3.v3.js"></script>

13 <script src="js/topojson.js"></script>

14

15 <!--link to main javascript file-->

16 <script src="js/main.js"></script>

17 </body>

18 </html>

__

Code Bank 1: Basic HTML5 Boiler Plate (in: index.html).

The next step is loading the geographic information assembled in europe.json. Remember the
ProcessCSV prototype function that you used to load and parse your spatiotemporal information
for Lab #1? One of the beauties of D3 is that it provides for you a series of functions for processing
information in various formats. The d3.csv() function performs the same action as the more

cumbersome ProcessCSV prototype from Lab #1. For Lab #3, you first will use the d3.json()
function, which places the information in your TopoJSON into the brower’s memory. Code Bank 2
provides the logic needed to initialize the webpage and print the europe.json file to the console.
Load the index.html page in Firefox; you now will see your TopoJSON loaded to the DOM (Figure 4).

https://github.com/mbostock/d3
https://github.com/mbostock/topojson/
https://github.com/mbostock/d3/wiki/CSV
https://github.com/mbostock/d3/wiki/Requests#wiki-d3_json

__

1 //begin script when window loads

2 window.onload = initialize();

3

4 //the first function called once the html is loaded

5 function initialize(){

6 setMap();

7 };

8

9 //set choropleth map parameters

10 function setMap(){

11 //retrieve and process europe json file

12 d3.json("data/europe.json", function(error, europe) {

13 console.log(europe);

14 });

15 }

__

Code Bank 2: Loading europe.json and Printing to the Console (in: main.js).

Figure 4. Printing the TopoJSON to the DOM. The object names should match

names given in Figure 3, which in turn should match the original .shp files.

Now that your information is loading properly, it is time to make a map! The first step in creating a
map or any other visualization using the D3 library is creation of an HTML element in which to
draw the map. In Labs #1 and #2, you added a div element to index.html to contain the Leaflet
map. For Lab #3, you instead will create a blank svg element for each of the included visualizations
and populate its content using JavaScript. As introduced in Lab #1, the .svg file format supports the
drawing and styling of vector-based graphics. D3 is built atop existing browser capability to render
SVG. It will be easier to interpret the following instructions in this subsection if you first review the
SVG specification at: http://www.w3.org/TR/SVG/.

Start creation of the choropleth map by drawing its basemap, or geographic context. The basemap
makes use of the geometry included in EuropeCountries.shp and converted to the
EuropeCountries object in your TopoJSON. All graphics associated with the choropleth view are
drawn within the setMap() function, created in Code Bank 2 and extended in Code Bank 3. First,
set the size of the map view in pixels (CB3: 3-5). Note the absence of px after each number, as used
in stylesheets; D3 takes integers for dimension values and translates them to pixels.

__

1 function setMap(){

2

3 //map frame dimensions

4 var width = 960;

5 var height = 460;

6

7 //create a new svg element with the above dimensions

8 var map = d3.select("body")

9 .append("svg")

10 .attr("width", width)

11 .attr("height", height);

12

13 //create Europe albers equal area conic projection, centered on France

14 var projection = d3.geo.albers()

15 .center([-8, 46.2])

16 .rotate([-10, 0])

17 .parallels([43, 62])

18 .scale(2500)

19 .translate([width / 2, height / 2]);

20

21 //create svg path generator using the projection

22 var path = d3.geo.path()

23 .projection(projection);

24

25 //retrieve and process europe json file

26 d3.json("data/europe.json", function(error,europe){

27 //add Europe countries geometry to map

28 var countries = map.append("path") //create SVG path element

29 .datum(topojson.object(europe,

 europe.objects.EuropeCountries))

30 .attr("class", "countries") //class name for styling

31 .attr("d", path); //project data as geometry in svg

32 });

33 }

__

Code Bank 3: Extending setMap() to Draw the Basemap.

http://www.w3.org/TR/SVG/

Next, create an svg element to contain the choropleth map using the d3.select() function
(CB3: 7-11). The statement d3.select("body") is essentially the same as $("body") in
jQuery, except it only returns the first matching element in the DOM instead of all matching
elements. Like jQuery, D3 uses dot syntax to string together function calls, an approach known as
method chaining. This code selects the <body> element of the DOM and adds an svg element,

then sets the size to the values already stored in the width and height variables. This new svg
element essentially is a container that holds the map geometry. Another method, selectAll(), is
evoked later in the instructions to select every element that matches the selector…even if those
elements haven't been created yet!

After creating the svg container, you then need to indicate how the geographic coordinates should
be projected onto the two-dimensional plane (the computer screen). You did not need to indicate a
projection in Leaflet due to the reliance on a tileset already projected into Web Mercator. As stated
in the introduction, one of the exciting things about D3 for cartographers is its support for an
extensive and growing library of map projections. The list of projections currently supported by D3,
either natively or through the extended projections plugin, is available at:
https://github.com/mbostock/d3/wiki/Geo-Projections. Choose a projection that is
cartographically appropriate for your mapped phenomena.

The following example applies the Albers Equal Area Conic projection using d3.geo.albers(), with a
centering on France (CB3: 13-19); this projection is native to d3.v3.js. The projection parameters
following the function call apply mathematical transformations to the default Albers projection:

 .center recenters the map at a given [lon, lat] coordinate;

 .rotate rotates the globe counter-clockwise (from the North Pole) away from the
geographic center;

 .parallels sets the standard parallels of the projection;

 .scale is the scale of the map, set using an arbitrary scale factor;

 .translate adjusts the pixel coordinates of the map's center, and always should be
set as half the width and height to keep the map's center in the center of the SVG area.

Next, you need to project your TopoJSON according to these projection parameters. D3 uses a "geo
path" svg element to render the geometry included in a .json as SVG. The d3.geo.path()
function creates a new path generator with a default projection of Albers USA. This logic may run
counter to that which you experienced in Labs #1 and #2; if D3 worked like Leaflet, you might
expect that calling d3.geo.path() will return a variable, like an object or an array. Instead, the
d3.geo.path() is a D3 generator function that creates a new function (the generator) based on
the parameters you send it. You can then store this generator function as a variable, and access the
variable like you would call a function, passing it variables to manipulate. Note that the
d3.geo.path() function requires that you specify the previously created projection. Each time
the path generator is used to create a new svg element (i.e., a new graphical layer in the map), the
svg graphics will be drawn using the projection indicated in the d3.geo.path() generator
function. Hopefully, the idea and usage of generator functions will become clearer as you proceed
through Lab #3.

First, make use of the d3.geo.path() generator function to define a path generator that creates
projected svg paths from the TopoJSON geometry based on your map projection (CB3: 21-23).
Then, make use of this path generator through the append() function to add an svg element

https://github.com/mbostock/d3/wiki/Selections#wiki-d3_select
https://github.com/mbostock/d3/wiki/Geo-Projections
https://github.com/mbostock/d3/wiki/Geo-Projections#wiki-albers
https://github.com/mbostock/d3/wiki/Geo-Paths
https://github.com/mbostock/d3/wiki/Selections#wiki-append

containing the geometry derived from your TopoJSON, projected according to the generator
definition (CB3: 25-32); note that this code should be part of the function called by d3.json(),

replacing the console log. The first line, append("path"), adds the referenced svg element
(countries) using the path generator (CB3: 28). The second line specifies the datum() that
will be attached to this path element (CB3: 29); in D3 terms, a datum is a unified chunk of
information that can be expressed in SVG form.

At this point, it is acceptable to treat the polygons in the EuropeCounties JavaScript object
altogether, as this is the background context for the choropleth map and will not be interactive. This
is why the append() function is used, rather than first calling the selectAll() and enter()
functions (described below). The datum() function expects a JSON or GeoJSON; to indicate to D3
that you are using the newer TopoJSON, access the topojson.object() method from

topojson.js, indicating the object (EuropeCounties) in the TopoJSON you want translated. The

third line assigns that countries element the class name “countries” so that it can be styled
in styles.css (CB3: 30). In the fourth line, the "d" attribute contains a string of information that

describes the path (see: https://developer.mozilla.org/en-US/docs/SVG/Attribute/d) (CB3: 31).
It is for this purpose that the path generator is so useful: it projects the EuropeCounties

geometry and translates it into an SVG path description string.

Figure 5. Drawing the Basemap.

https://github.com/mbostock/d3/wiki/Selections#wiki-datum
https://developer.mozilla.org/en-US/docs/SVG/Attribute/d

Altogether, the revisions in Code Bank 3 result in four D3 blocks of chained methods connected by
dot syntax to minimize the file size (8-11; 14-19; 22-23; 26-32). It is important that you do not
place a semicolon between lines of a block, as this interrupts the block and results in a syntax error.
A semicolon can be placed at the end of the block to denote its end, although this really only makes
a difference if you plan to minify your script for deployment. To maintain legibility, the following
instructions designate a variable for each block that creates at least one new element, with the
same variable name as the class attribute designated for that element, even if that variable is not
accessed again. If a separate main.js function is called from a block, that function's annotation will
refer to the variable name of the block that the function is called from. Now refresh your browser.
Look, it's a map (Figure 5)!

With the basemap geometry drawing in the browser, it is now time to style the basemap. Style rules
can be applied to the svg element containing the projected map using the countries class
reference (CB3: 30). Return to style.css and add the basic style rules provided in Code Bank 4.
These styles add default gray outlines to the countries as a starting point; continue to improve
the applied basemap styles as you progress through the lab.

__

1 .countries {

2 fill: #fff;

3 stroke: #ccc;

4 stroke-width: 2px;

5 }

__

Code Bank 4: Basic Styles for the countries class (in style.css).

A nice cartographic function supported by D3 is the ability to add graticule lines to any map (Code
Bank 5). At the time of writing Lab #3, the d3.geo.graticule() function was not yet
integrated into the D3 API; however, an example of the d3.geo.graticule()function is

available at: http://bl.ocks.org/mbostock/3734308. (Note: graticule() was added into the API
over spring break in v3.1!).

To add the graticule to your basemap, begin by creating a generator called graticule (CB5: 1-3).
Where you place this code matters, as you are conceptually building up your visual hierarchy from
the buttom-up in the map as you add new code from the top-down in the setMap() function. The
graticule generator should be placed after creating the path generator, but before loading and
processing the TopoJSON using d3.json(); this order will place the countries above the graticule.

Next, use the path generator to add two svg elements named gratBackground (i.e., the water)
and gratLines to the map. First, add gratBackground using the append() function and
configure its attributes (CB5: 5-9). Then, add gratLines to the path element using
selectAll() and enter() and configure its attributes (CB5: 11-17). As stated above, the use of
selectAll()/enter() is different from the use of append() alone. D3's selectAll() and
enter() functions are used to create multiple, new elements at once, and thus to draw each
desired graticule line individually; this is required by D3 for graticule lines, but also is useful when
individual features are styled differently or are interactive.

http://bl.ocks.org/mbostock/3734308
https://github.com/mbostock/d3/wiki/Selections#wiki-d3_selectAll
https://github.com/mbostock/d3/wiki/Selections#wiki-enter

Consider carefully the code provided in Code Bank 5, particularly the final block. It might appear as
though D3 warped the space-time continuum to select DOM elements before they were created.
Really, D3 just ‘sets the stage’ for them. The selectAll() function creates an empty selection,
which allows an element to appear for each graticule line (CB5: 12). The data() function operates
like datum(), but computes a function that will join each datum (each data value or array within

the overall data array) to its own element (CB5: 13). The enter() function compares the number
of data values ("datums") to the number of DOM elements that match the selector, and counts each
element that is needed but does not already exist (CB5: 14). The append() function adds a new
svg path element for each element counted by enter(), binding the datum to that element
(CB5: 15). The first attr() call assigns each path element a class for styling purposes (CB5: 16);
note that you must assign this class, as the only function of selectAll(".gratLines") is to
select elements that do not exist yet in the DOM. The second attr() call projects the data through
the path generator into the d svg attribute, just as gratBackground and countries are
projected.

__

1 //create graticule generator

2 var graticule = d3.geo.graticule()

3 .step([10, 10]); //place graticule lines every 10 degrees

4

5 //create graticule background

6 var gratBackground = map.append("path")

7 .datum(graticule.outline) //bind graticule background

8 .attr("class", "gratBackground") //assign class for styling

9 .attr("d", path) //project graticule

10

11 //create graticule lines

12 var gratLines = map.selectAll(".gratLines") //select graticule elements

13 .data(graticule.lines) //bind graticule lines to each element

14 .enter() //create an element for each datum

15 .append("path") //append each element to the svg as a path element

16 .attr("class", "gratLines") //assign class for styling

17 .attr("d", path); //project graticule lines

__

Code Bank 5: Adding a Graticule to setMap() (in: main.js).

Finally, style the gratBackground and gratLines in style.css using the class names
“gratBackground” and “gratLines” (Code Bank 6); you are encouraged to tweak these
styles as your design evolves. Refresh your index.html page in Firefox to view your basemap
(Figure 6).

__

1 .gratBackground {

2 fill: #D5E3FF;

3 }

4

5 .gratLines {

6 fill: none;

7 stroke: #999;

8 stroke-width: 1px;

9 }

__

Code Bank 6: Styling the Graticule (in style.css).

https://github.com/mbostock/d3/wiki/Selections#wiki-data

Figure 6. Styling the Basemap.

With the basemap context in place, you are ready to draw your choropleth map. Again, the
choropleth maps uses the geometry included in FranceProvinces.shp and converted to the
FranceProvinces object in your TopoJSON. The FranceProvinces object could be added
through the path generator using the append() function, as with the EuropeCountries above.
Unlike the basemap, however, each province is unique in both representation and interaction. You
need to add each province separately in order to set different properties and attach different event
listeners to each individual province. Therefore, you need to use the selectAll() and enter()

functions—much like you did to draw each graticule lines—rather than the simple append()
function—like you did for drawing the basemap countries and graticule background (Code Bank
7). A new svg element named provinces is created using the selectAll() function and each
province is added to the map by the path generator using the enter() function. It is important
to note that Code Bank 7 must be added within the d3.json() function, as the TopoJSON must
first be processed before adding the provinces element.

__

1 //retrieve and process europe json file

2 d3.json("data/europe.json", function(error,europe){

3

4 //add Europe countries geometry to map

5 var countries = map.append("path") //create SVG path element

6 .datum(topojson.object(europe,

 europe.objects.EuropeCountries))

7 .attr("class", "countries") //class name for styling

8 .attr("d", path); //project data as geometry in svg

9

10 //add provinces to map as enumeration units colored by data

11 var provinces = map.selectAll(".provinces")

12 .data(topojson.object(europe,

 europe.objects.FranceProvinces).geometries)

13 .enter() //create elements

14 .append("path") //append elements to svg

15 .attr("class", "provinces") //assign class for additional styling

16 .attr("id", function(d) { return d.properties.adm1_code })

17 .attr("d", path) //project data as geometry in svg

18

19 });

__

Code Bank 7: Drawing the Choropleth Map in setMap() (in: main.js).

Reload your index.html file in Firefox; you now should see your enumeration units plotted atop the
basemap and graticule with a default black fill (Figure 7).

You now are ready to load the .csv file containing your multivariate information so that you can
color the enumeration units according to their unique attribute values. Code Bank 8 makes use of a
file named unitsData.csv. Again note that this file includes a column with the adm1_code header
for each province (Figure 1), which can be used to join each province's multivariate information in
the .csv file to its geographic information in the .json.

Code Bank 8 uses the d3.csv() function and AJAX, or Asynchronous JavaScript and XML, to
load and parse unitsData.csv. AJAX allows for communication between server (here the simple .csv)
and the browser without interfering with the content and styles of the display itself (i.e., without
refreshing). The d3.csv() function loads in the unitsData.csv file in the data folder (CB8: 2) and
parses each row into an object using the column headings as keys. You can see this structure in the
Firebug console if you add a console.log() statement. Because d3.csv() is used in an
asynchronous manner, the anonymous function(csvData)included as the second parameter is

a callback function. This means that any script outside of the d3.csv() callback (or a
d3.json() callback) will execute before the script inside of the callback. This can lead to much
confusion if you are expecting the callback to add or change a variable that is declared outside of it;
in this situation, the variable ends up remaining empty when used. It takes some thinking about the
order in which things happen in the script to solve problems like this. Return to the JavaScript
Lynda tutorials for additional information about AJAX programming.

http://en.wikipedia.org/wiki/Ajax_(programming)

Figure 7. Drawing the Enumeration Units.

The practical upshot here is that in order to attach the multivariate information from the
unitsData.csv to the geographic information in europe.json, you need to nest the two AJAX
functions—d3.json() and d3.csv()—one inside the other. Which AJAX function contains which
in the nested hierarchy matters less than making sure that any variables accessing external files are
inside of the callback that loads the given file. The provinces block from Code Bank 7 (10-17)
must be within both callbacks (i.e., the innermost layer) in order for the choropleth to draw (CB8:
35-49). It also is within both callbacks, and before the provinces block, where you must attach
the multivariate information to the provinces element through a series of nested loops (CB8: 11-
33).

Like the ProcessCSV prototype function in Labs #1 and #2, loading and parsing external
information often is the most challenging and confusing aspect of web map development. Before
moving on, add logs to the console line-by-line to inspect how the .csv and .json contents are being
manipulated and combined through the nested AJAX callbacks and the nested for loops. While you
need not customize this parser for Lab #3 (aside from file names and instance names), it is likely
that you will need to extend or revise this parser, or one you find online, for your final project.

1 //retrieve data in csv data file for coloring choropleth

2 d3.csv("data/unitsData.csv", function(csvData){ //callback #1

3

4 //retrieve and process europe json file

5 d3.json("data/europe.json", function(error,europe){ //callback #2

6

7 //variables for csv to json data transfer

8 var keyArray = ["varA","varB","varC","varD","varE"];

9 var jsonProvs = europe.objects.FranceProvinces.geometries;

10

11 //loop through csv to assign each csv values to json province

12 for (var i=0; i<csvData.length; i++) {

13 var csvProvince = csvData[i]; //the current province

14 var csvAdm1 = csvProvince.adm1_code; //adm1 code

15

16 //loop through json provinces to find right province

17 for (var a=0; a<jsonProvs.length; a++){

18

19 //where adm1 codes match, attach csv to json object

20 if (jsonProvs[a].properties.adm1_code == csvAdm1){

21

22 // assign all five key/value pairs

23 for (var b=0; b<keyArray.length; b++){

24 var key = keyArray[b];

25 var val = parseFloat(csvProvince[key]);

26 jsonProvs[a].properties[key] = val;

27 };

28

29 jsonProvs[a].properties.name = csvProvince.name; //set prop

30 break; //stop looking through the json provinces

31 };

32 };

33 };

34

35 //add Europe countries geometry to map

36 var countries = map.append("path") //create SVG path element

37 .datum(topojson.object(europe,europe.objects.EuropeCountries))

38 .attr("class", "countries") //assign class for styling countries

39 .attr("d", path); //project data as geometry in svg

40

41 //add provinces to map as enumeration units colored by data

42 var provinces = map.selectAll(".provinces")

43 .data(topojson.object(europe,

 europe.objects.FranceProvinces).geometries)

44 .enter() //create elements

45 .append("path") //append elements to svg

46 .attr("class", "provinces") //assign class for additional styling

47 .attr("id", function(d) { return d.properties.adm1_code })

48 .attr("d", path) //project data as geometry in svg

49 });

50 });

__

Code Bank 8: Relating Your .csv and .json Information within setMap() (in: main.js).

Now that the multivariate information in the .csv file is attached to the provinces geometry
element, you can color each province according to its unique attribute value. The example
csvData.csv file contains five variables using the column headers "varA" through "varE" (Figure 1).
Before implementing the choropleth styling solution, you first need to implement a method for
determining which of the five variables should be represented in the choropleth map.

You need to declare two global variables to indicate which variable to represent in the choropleth
map (Code Bank 9): (1) keyArray, which lists the complete set of headers in the .csv file, or keys

in the provinces object, and (2) expressed, which indicates the keys currently in use for
coloring the choropleth map. These variables must be global (i.e., outside of any function) so that
they can be leveraged by both the choropleth map and the PCP. The keyArray variable already is

declared within the nested AJAX functions (CB8: 8); since the keys contained by keyArray are
strings, they do not need to be inside of the AJAX callback. Be sure that you move this variable from
within the setMap() function to the top of the main.js document, rather than duplicating it in both
places in your code. Then, add the second global variable named expressed to indicate the
currently selected key for use in the choropleth map. Set the default index to 0, or the first attribute
in the .csv file; you later will support multivariate sequencing through these keys when
implementing the PCP.

__

1 //global variables

2 var keyArray = ["varA","varB","varC","varD","varE"]; //array of property keys

3 var expressed = keyArray[0]; //initial attribute

__

Code Bank 9: Global Variables for Setting the Choropleth Variable (in: main.js).

Next, you need to add two new functions providing the logic for styling the choropleth map (Code
Bank 10): (1) colorScale() and (2) choropleth(); these function are external to the
setMap() function. The colorScale() function (CB10: 1-20) provides the logic for setting the
class breaks using a quantile classification, which divides a variable into a discrete number of
classes with each class containing the same number of items. Quantile classification is supported
natively by D3 through d3.scale.quantile(). Importantly, the colorScale() function takes

the csvData object from the d3.csv() callback function as a parameter (CB10: 1),
demonstrating the value of the AJAX solution. Because of this, the call to colorScale() must be
added as the first line within the d3.csv() function definition, before the nested d3.json()

function definition (CB11: 2). The colorScale()function first creates a
d3.scale.quantile() generator named color and indicates the color scheme for the
choropleth using the range() function (CB10: 3-11); a five-class, purple color scheme from

ColorBrewer is used here. The domain() function is added to the colorScale() generator so
that it is called after determining the minimum and maximum value of the currently expressed key
within the csvData object (CB10: 13-17). The color generator is returned to setMap()and
stored locally in recolorMap (CB10: 19 -> CB11: 2).

The choropleth() function then colors the enumeration units according to this quantile

classification. The choropleth() function is called on the style() method in the provinces
block, within the nested AJAX calls in setMap() (CB11: 16-18). The choropleth function takes two
parameters: (1) a datum from the europe.json FrancePovinces object associated with a given
province (identified through combined use of selectAll() and enter()) and (2) the color

generator, stored locally in the recolorMap variable. (CB11: 17). The choropleth function
identifies the attribute value of the province under investigation (CB10: 25) and then checks if a
value is valid (CB10: 27). If the value exists, class color associated with that value’s quantile is
returned (CB10: 28); if it does not, a default grey is returned (CB10: 30).

https://github.com/mbostock/d3/wiki/Arrays#wiki-d3_quantile
http://www.colorbrewer.org/

__

1 function colorScale(csvData){

2

3 //create quantile classes with color scale

4 var color = d3.scale.quantile() //designate quantile scale generator

5 .range([

6 "#D4B9DA",

7 "#C994C7",

8 "#DF65B0",

9 "#DD1C77",

10 "#980043"

11]);

12

13 //set min and max data values as domain

14 color.domain([

15 d3.min(csvData, function(d) { return Number(d[expressed]); }),

16 d3.max(csvData, function(d) { return Number(d[expressed]); })

17]);

18

19 return color; //return the color scale generator

20 }

21

22 function choropleth(d, recolorMap){

23

24 //get data value

25 var value = d.properties[expressed];

26 //if value exists, assign it a color; otherwise assign gray

27 if (value) {

28 return recolorMap(value);

29 } else {

30 return "#ccc";

31 };

32 };

__

Code Bank 10: Functions for Styling the Choropleth Map (in: main.js).
__

1 d3.csv("data/unitsData.csv", function(csvData){

2 var recolorMap = colorScale(csvData);

3

4 //retrieve and process europe json file

5 d3.json("data/europe.json", function(error,europe){

6

7 //CODE BANK 8 SUPPRESSED FOR SPACE

8

9 var provinces = map.selectAll(".provinces")

10 .data(topojson.object(europe,

 europe.objects.FranceProvinces).geometries)

11 .enter() //create elements

12 .append("path") //append elements to svg

13 .attr("class", "provinces") //assign class for styling

14 .attr("id", function(d) { return d.properties.adm1_code })

15 .attr("d", path) //project data as geometry in svg

16 .style("fill", function(d) { //color enumeration units

17 return choropleth(d, recolorMap);

18 });

19 });

20 });

__

Code Bank 11: Styling the Choropleth Map in setMap() (in: main.js).

Figure 8. Styling the Choropleth Map.

Refresh index.html in Firefox. Bingo! You now have a choropleth map (Figure 8)!

With the map drawing properly, you now can implement the retrieve operator to acquire attribute
values from the enumeration units. Like Leaflet, D3 uses .on() as the primary method for adding
event listeners. Implementing the retrieve operator includes two components: (1) providing visual
feedback about which enumeration unit was probed, described in lecture as highlighting, and (2) a
dynamic label that activates to provide details about the probed enumeration unit. The retrieve and
associated highlighting solution will be coordinated between the map & PCP in subsequent steps.

You need three functions to implement the retrieve operator: (1) highlight(), which restyles the
probed enumeration unit and populates the content for the dynamic label on mouseover (CB12:
13), (2) dehighlight(), which reverts the enumeration unit back to its original color and
deactivates the dynamic label on mouseout (CB12: 14), and (3) moveLabel(), which updates
the position of the dynamic label according to changes in the x/y coordinates of the mouse on
mousemove (CB12: 15). The event listeners should be added at the end of the provinces block
in setMap() (CB11: 9-18) to make each enumeration unit in the choropleth interactive, making
sure you update the position of the semi-colon that ends the block.

When implementing highlighting across features that are styled differently (as with the varying
color scheme in a choropleth map), it is necessary to store the original color of the highlighted
feature for when the feature is subsequently “dehighlighted”. This approach is faster than
reprocessing the .json object. The solution in Code Bank 12 appends the original color as a text
string in a desc SVG element (CB12: 16-19). The contents of the desc element then can be
referenced to extract this color when reverting the enumeration unit to its original choropleth
styling upon dehighlight().

__

1 //CODE BANK 12 SUPPRESSED FOR SPACE

2

3 var provinces = map.selectAll(".provinces")

4 .data(topojson.object(europe,

 europe.objects.FranceProvinces).geometries)

5 .enter() //create elements

6 .append("path") //append elements to svg

7 .attr("class", "provinces") //assign class for styling

8 .attr("id", function(d) { return d.properties.adm1_code })

9 .attr("d", path) //project data as geometry in svg

10 .style("fill", function(d) { //color enumeration units

11 return choropleth(d, recolorMap);

12 })

13 .on("mouseover", highlight)

14 .on("mouseout", dehighlight)

15 .on("mousemove", moveLabel)

16 .append("desc") //append the current color

17 .text(function(d) {

18 return choropleth(d, recolorMap);

19 });

__

Code Bank 12: Adding Event Listeners to provinces in setMap()(in: main.js).

Once adding the event listeners to the provinces block of setMap(), you then must define the

event handler functions. First, add a new function named highlight(), which should be defined
outside of setMap() (CB13: 1-19). The highlight() function receives the data object
associated with highlighted enumeration unit as the parameter. A second function named
datatest() allows for the use of two different formats of the data parameter, which will be

necessary to apply highlight() and dehighlight() to the linked visualization you build later
(CB13: 21-27). Once formatted, the data object is stored in a local variable named props (CB13:
3). The highlight() function then calls d3.select() to find the SVG path for the province,
using the adm1_code, and changes its fill style to black (CB13: 5-6). You are encouraged to
consider the other highlighting solutions discussed in class and to adjust your code accordingly.

The highlight() function then designates two html strings used in the dynamic label, one with
the attribute data (labelAttribute) and one with the province name (labelName) (CB13: 8-
9). Note how the labelAttribute variable makes use of the global expressed variable to
determine the attribute to include in the label. As above, you are encouraged to adjust the content
of the dynamic label based on the purpose of your map. Finally, the highlight() function creates
a new div element named infolabel to hold the dynamic label (CB13: 11-19). A child div
named labelname is added to infolabel to position the province name within the label.

__

1 function highlight(data){

2

3 var props = datatest(data); //standardize json or csv data

4

5 d3.select("#"+props.adm1_code) //select the current province in the DOM

6 .style("fill", "#000"); //set the enumeration unit fill to black

7

8 var labelAttribute = "<h1>"+props[expressed]+

 "</h1>
"+expressed+""; //label content

9 var labelName = props.name; //html string for name to go in child div

10

11 //create info label div

12 var infolabel = d3.select("body").append("div")

13 .attr("class", "infolabel") //for styling label

14 .attr("id", props.adm1_code+"label") //for label div

15 .html(labelAttribute) //add text

16 .append("div") //add child div for feature name

17 .attr("class", "labelname") //for styling name

18 .html(labelName); //add feature name to label

19 };

20

21 function datatest(data){

22 if (data.properties){ //if json data

23 return data.properties;

24 } else { //if csv data

25 return data;

26 };

27 };

Code Bank 13: Highlighting the Choropleth Map (in: main.js).

Add style rules to the dynamic label in style.css, using the infolabel and labelname class
identifiers. Code Bank 14 provides basic style rules to create a 200x50px dynamic label with white
text and a black background. Note that the <h1> and tags are styled for the infolabel text
(CB14: 17-26), as these are used in the labelAttribute html string (CB13: 8); you are not
limited to these tags in the design of your dynamic label. Again, you are encouraged to modify these
styles to match the overall design of your map.

Reload your index.html page in Firefox and inspect your work. At this point, mousing over an
individual enumeration unit should result in highlighting the unit and retrieving the associated
attribute value (Figure 9a). There are two problems with this implementation, however. First, the
enumeration units do not return to their original color on mouseout, as you have yet to implement
the dehighlight() function (note the Firefox console error). Use what you have learned up to
this point to define the dehighlight() function on your own. The dehiglight() function

represents the conceptual opposite of the highlight() function, requiring you to revert the
enumeration unit color and deactivate the dynamic label. Remember that the color text is stored in
the desc variable of the provinces path being dehighlighted. You will need to investigate the
remove() function in D3 to learn how to remove an element (the dynamic label) from the DOM.

Second, the dynamic label, while updating on mouseover, is positioned away from the map itself.

To make the dynamic label follow the user’s mouse cursor, first change the positioning of all svg
elements to absolute in style.css (CB14: 1-3); this should be defined early in the stylesheet so it may
be overridden by individual class rules. Then, define the moveLabel() function in main.js that is

https://github.com/mbostock/d3/wiki/Selections#wiki-remove

called on mousemove atop an enumeration unit (Code Bank 15). The moveLabel() function
uses the d3.event() function to access the current mouse event (mousemove), which includes
mouse coordinate properties (clientX and clientY). The function simply accesses the mouse
coordinates of the event and uses them to offset the label in relation to the body element, the
lowest DOM element that is relatively positioned. If you changed the size of the dynamic label in
style.css, you need to adjust the horizontal and vertical label coordinates according to the revised
width and height (CB15: 3-4).
__

1 svg {

2 position: absolute;

3 }

4

5 /*CODEBANK 4 & 6 SUPPRESSED FOR SPACE*/

6

7 .infolabel {

8 position: absolute;

9 width: 200px;

10 height: 50px;

11 color: #fff;

12 background-color: #000;

13 border: solid thin #fff;

14 padding: 5px;

15 }

16

17 .infolabel h1 {

18 margin: 0;

19 padding: 0;

20 display: inline-block;

21 line-height: 1em;

22 }

23

24 .infolabel b {

25 float: left;

26 }

27

28 .labelname {

29 display: inline-block;

30 float: right;

31 margin: -25px 0px 0px 40px;

32 font-size: 1em;

33 font-weight: bold;

34 position: absolute;

35 }

__

Code Bank 14: Styling the Dynamic Label (in: style.css).
__

1 function moveLabel() {

2

3 var x = d3.event.clientX+10; //horizontal label coordinate

4 var y = d3.event.clientY-75; //vertical label coordinate

5

6 d3.select(".infolabel") //select the label div for moving

7 .style("margin-left", x+"px") //reposition label horizontal

8 .style("margin-top", y+"px"); //reposition label vertical

9 };

__

Code Bank 15: Styling the Dynamic Label (in: main.js).

Reload the index.html page; you now should have a functional retrieve operator that includes
highlighting and a dynamic label that follows the mouse (Figure 9b)!

Figure 9. Implementing Retrieve in the Choropleth Map.

After implementing the choropleth view, it is time to turn your attention to the parallel coordinate
plot view, and coordination of interaction between the views. As introduced in lecture, a parallel
coordinate plot, or PCP, supports visualization of multivariate information. Unlike a scatterplot,
which juxtaposes a pair of coordinates orthogonally to one another, a PCP places three or more
attribute axes parallel to one another. A unique line then is "threaded" through the axes for each
item in the information set, producing an attribute signature of the information item that can be
linked with the spatial signature shown in a map view. The following PCP implementation draws
from the PCP example posted by Jason Davies.

While you must implement the PCP plot for Lab #3, you will receive +5 bonus points for each
additional view you implement, if the interactions are coordinated with the map and PCP views.
Example code for implementing a variety of alternative visualizations is provided in the D3 Gallery.

As with the setMap() function for the choropleth view, create a new function named drawPCP()
for the PCP view (Code Bank 16). The drawPCP() function is complex, including multiple steps to
create the svg elements containing the axes and lines, to scale the axes and place the lines
according to the multivariate information in the .csv file, and to coordinate interactions with the
map view. The broader drawPCP() function is divided into a series of code banks, with each
conceptual step treated individually; return to the choropleth map description for details about D3
terminology and functionality, as it is not re-introduced here. The drawPCP() function should be

called within the d3.csv() callback in setMap() to ensure the .csv file has loaded first.

The PCP view needs a second svg element different from the choropleth map, so begin by
designating its width and height in local variables. The width does not need to match that of the
choropleth map, but does in the Code Bank 16a example.

__

1 function drawPcp(csvData){

2

3 //pcp dimensions

4 var width = 960;

5 var height = 200;

_

Code Bank 16a: Setting the PCP svg Dimensions (in: main.js).

Next, prepare the creation of the vertical axes representing each attribute or “coordinate” (Code
Bank 16b). You need to create an array of coordinate names (name attributes) from the key
names (stored temporarily in keys) within the csvData object (CB16b: 5-16). Depending on how
many non-variable columns are included in your .csv file, you may need to adjust the initial index
position used to convert keys into attributes (CB16b: 14); the index position of i=3 is used in
Code Bank 16b so that the first three columns in Figure 1 are not included as coordinates in the
PCP.

http://bl.ocks.org/jasondavies/1341281
https://github.com/mbostock/d3/wiki/Gallery

_

5 //create attribute names array for pcp axes

6 var keys = [], attributes = [];

7

8 //fill keys array with all property names

9 for (var key in csvData[0]){

10 keys.push(key);

11 };

12

13 //fill attributes array with only the attribute names

14 for (var i=3; i<keys.length; i++){

15 attributes.push(keys[i]);

16 };

_

Code Bank 16b: Preparing an Array of Coordinates for the PCP (in: main.js).

Then, set the positioning of the axes using the d3.scale.ordinal() generator function (Code

Bank 16c). This function is an instance of D3's scale prototype, somewhat like
d3.scale.quantile()scale that you used to create your choropleth color scheme. However,
unlike the continuous numerical domain of the quantile() scale, the ordinal() scale deals

with a discrete set of items, in this case your attribute categories. The domain() function
horizontally spaces each axis in the attributes string evenly (CB16c: 19) and the
rangePoints() function splits each attribute evenly along a continuum between a numerical
start value and end value (CB16c: 20); use of the width variable as the end value stretches the axes
along the width of the containing div. An alternative method provided by D3, range(), associates
each domain value to a specific range value given in an associated array. Compare the
documentation for the ordinal()scale to that provided for the quantile() color scale, as
understanding the difference is useful to understanding how D3 handles data.

_

17 //create horizontal pcp coordinate generator

18 var coordinates = d3.scale.ordinal() //create an ordinal axis scale

19 .domain(attributes) //horizontally space each axis evenly

20 .rangePoints([0, width]); //set the horizontal width to svg

_

Code Bank 16c: Creating the coordinates Generator(in: main.js).

Next, create two generators named axis and line to draw the PCP axes and lines. Make use of the
d3.svg.axis() generator function to create a generator (axis) for the coordinate axes (CB16d:

21-22). Calling orient("left") on the generator function sets each axis to a vertical orientation.
Yet a third kind of D3 scale, d3.scale.linear(), creates a generator to make a visible linear

scale (i.e. ‘ruler’) for each axis (CB16d: 24-32). The d3.scale.linear() creates the scales
generator based on the minimum and maximum attribute values of all enumeration units (CB16d:
28-30). The scale range() is set as the height of the svg container. The result of this block is an
object named scales that holds five unique scale generators--one for each coordinate axis. Finally,
the d3.svg.line() generator function creates a simple generator named line for adding the
attribute signatures of the enumeration units atop the scaled coordinates.

https://github.com/mbostock/d3/wiki/Ordinal-Scales

_

21 var axis = d3.svg.axis() //create axis generator

22 .orient("left"); //orient generated axes vertically

23

24 //create vertical pcp scale

25 scales = {}; //object to hold scale generators

26 attributes.forEach(function(att){ //for each attribute

27 scales[att] = d3.scale.linear() //create a linear scale generator

28 .domain(d3.extent(csvData, function(data){

29 return +data[att]; //create array of extents

30 }))

31 .range([height, 0]); //set the axis height to SVG height

32 });

33

34 var line = d3.svg.line(); //create line generator

_

Code Bank 16d: Creating axis and line Generators(in: main.js).

With the generators in place, you now can create new svg elements for the PCP (Code Bank 16e).
The pcplot block creates an svg container for the PCP based on the dimensions previously
designated (CB16e: 38-39) and gives it a class named pcplot for style adjustments in style.css

(CB16e: 40). It also appends a child container element (g) to hold all of the line geometry (CB16e:
41), and mathematically transforms the child container using d3.transform() to make it
smaller than the outer boundaries of the svg container (CB16e: 42-44). More information about
this mathematical transformation is available at: http://www.w3.org/TR/SVG/coords.html. The
pcpBackground block appends a rect (rectangle) to pcplot for styling the background of the
PCP (CB16e: 46-53). Make sure to style the rectangle using the class name pcpBackground in
styles.css (CB17: 1-10). For more on the rect element, see https://developer.mozilla.org/en-
US/docs/SVG/Element/rect.

_

35 //create a new svg element with the above dimensions

36 var pcplot = d3.select("body")

37 .append("svg")

38 .attr("width", width)

39 .attr("height", height)

40 .attr("class", "pcplot") //for styling

41 .append("g") //append container element

42 .attr("transform", d3.transform(//change the container size/shape

43 "scale(0.8, 0.6),"+ //shrink

44 "translate(96, 50)")); //move

45

46 var pcpBackground = pcplot.append("rect") //background for the pcp

47 .attr("x", "-30")

48 .attr("y", "-35")

49 .attr("width", "1020")

50 .attr("height", "270")

51 .attr("rx", "15")

52 .attr("ry", "15")

53 .attr("class", "pcpBackground");

_

Code Bank 16e: Adding the PCP Container and Drawing the Background (in: main.js).

https://github.com/mbostock/d3/wiki/Math#wiki-transform
http://www.w3.org/TR/SVG/coords.html
https://developer.mozilla.org/en-US/docs/SVG/Element/rect
https://developer.mozilla.org/en-US/docs/SVG/Element/rect

Once the pcpBackground rectangle is drawn, you then can draw the lines within the pcpLines
element. Use your understanding of JavaScript and D3 to interpret the logic in Code Bank 16f.
Compare the drawing of PCP lines in Code Bank 16f with the drawing of map polygons in Code
Bank 12 to see how svg elements are used similarly to draw both visualizations. The primary
difference is use of the csvData object (rather than the TopoJSON object) and the line generator,

which creates a new line for each datum in the csvData object. The map() method of D3 (used
here in a non-cartography way) iterates over each attribute in your attributes array and
generates an object consisting of (x,y) coordinate arrays of length=2, with each array representing
the position of a single PCP line in a single PCP axis (CB16f: 65-67).

_

54 //add lines

55 var pcpLines = pcplot.append("g") //append a container element

56 .attr("class", "pcpLines") //class for styling lines

57 .selectAll("path") //prepare for new path elements

58 .data(csvData) //bind data

59 .enter() //create new path for each line

60 .append("path") //append each line path to the container element

61 .attr("id", function(d){

62 return d.adm1_code; //id each line by admin code

63 })

64 .attr("d", function(d){

65 return line(attributes.map(function(att){ //get coordinates

66 return [coordinates(att), scales[att](d[att])];

67 }));

68 });

_

Code Bank 16f: Drawing the Lines (in: main.js).

Finally, add the PCP coordinates on top of the PCP lines (Code Bank 16g). The axes are drawn
atop pcpLines to improve the ability to see and interact with them; again, remember that the top-
bottom order of your code represents the bottom-up drawing of your map. The first five lines of the
axes block create a container element for each coordinate axis, setting the class name of each axis
to the name of the attribute associated with the axis (CB16g: 70-74). The transform attribute
positions each axis container evenly along the coordinate scale using the scale generator (CB16g:

75-77); coordinates(d) refers to the horizontal pixel position of each axis. The each()
method invokes a function on each axis element (CB16g: 78-89). Within this function, the axis
generator function is called to create the visible path of the coordinate (CB16g: 80-82). The
scale() method invokes the appropriate scale generator from the scales object to append the
axis scale, giving the axis the correct height (CB16g: 80). D3's axis.scale() method
automatically creates a scale with tick marks and numbers, so to avoid this you have to specify both
the number of ticks and the tick size as 0 (CB16g: 81-82). You also want to give each axis container

an id so you can change the width of each axis individually when that axis is selected (CB16g: 84).
Set an initial width for all of the axes (e.g., 5px) (CB16g: 85). The click listener calls a function

called sequence() to update the variable portrayed in the choropleth map (CB16g: 86-88); this
function currently is commented out, as the sequence operator is treated a subsequent step.

The final block sets a width (e.g., 10px) for the axis that corresponds to the expressed attribute
(CB16g: 91-92). Before moving onto the next step, add appropriate styles for your lines and axes in
style.css (Code Bank 17: 12-23). Reload your index.html page; you should see a PCP (Figure 10)!

_

69 //add axes

70 var axes = pcplot.selectAll(".attribute") //prepare for new elements

71 .data(attributes) //bind data (attribute array)

72 .enter() //create new elements

73 .append("g") //append elements as containers

74 .attr("class", "axes") //class for styling

75 .attr("transform", function(d){

76 return "translate("+coordinates(d)+")"; //position axes

77 })

78 .each(function(d){ //invoke the function for each axis

79 d3.select(this) //select the current axis container element

80 .call(axis.scale(scales[d]) //generate the scale

81 .ticks(0) //no ticks

82 .tickSize(0) //no ticks, I mean it!

83)

84 .attr("id", d) //assign the attribute name as the axis id

85 .style("stroke-width", "5px") //style each axis

86 .on("click", function(){ //click listener

87 // sequence(this, csvData);

88 });

89 });

90

91 pcplot.select("#"+expressed) //select the expressed attribute's axis

92 .style("stroke-width", "10px");

93 };

__

Code Bank 16g: Drawing the Axes (in: main.js).

__

1 .pcplot {

2 margin-top: 470px;

3 }

4

5 .pcpBackground {

6 fill: #ccc;

7 opacity: 0.5;

8 stroke: #000;

9 stroke-width: 4px;

10 }

11

12 .pcpLines path {

13 fill: none;

14 stroke-width: 4px;

15 stroke: #1e90ff;

16 }

17

18 .axes path {

19 fill: none;

20 stroke: #000;

21 stroke-opacity: 0.5;

22 stroke-linecap: round;

23 }

__

Code Bank 17: Styling the PCP View (in: style.css).

With the choropleth and PCP views drawn, you now should have a good general impression on how
to implement views in D3:

(1) Designate your input parameters (such as dimensions and arrays of data values);
(2) Designate generator functions you will need to draw your svg elements;
(3) Select the DOM elements you intend to fill or create (even if they do not exist yet);
(4) Bind data to svg elements, enter() (if multiple elements), and append() those

elements;
(5) Set the attributes and styles of the svg elements, using the generator functions you

previously designated or in style.css.

Figure 10: Drawing the PCP View

After drawing your PCP, you now can implement the retrieve operator for the PCP and coordinate
this operator between the map and PCP. As described in lecture, coordination is the application of
an operator evoked in one view on associated information elements in all other views and is
fundamental to the success of exploratory geovisualization.

Coordination of the retrieve operator across views is completed in two steps. First, add event
listeners onto the pcpLines element for detecting mouseover, mouseout, and mousemove
events atop any of the lines in the PCP (CB18: 16-18). The event handers for these three functions
are the same as those used to handle the retrieve operator : highlight(), dehighlight(), and
moveLabel(), respectively (see CB12: 13-15). It is through use of the same event handler
functions that operators are coordinated: regardless of the view receiving the interaction, the same
function updating both views is called. Importantly, because you are chaining additional methods to
the end of the pcpLines element, you need to change the position of the semi-colon (e.g., from
CB18: 15 to CB18: 18).

__

1 //add lines

2 var pcpLines = pcplot.append("g") //append a container element

3 .attr("class", "pcpLines") //class for styling lines

4 .selectAll("path") //prepare for new path elements

5 .data(csvData) //bind data

6 .enter() //create new path for each line

7 .append("path") //append each line path to the container element

8 .attr("id", function(d){

9 return d.adm1_code; //id each line by admin code

10 })

11 .attr("d", function(d){

12 return line(attributes.map(function(att){ //get coordinates

13 return [coordinates(att), scales[att](d[att])];

14 }));

15 })

16 .on("mouseover", highlight)

17 .on("mouseout", dehighlight)

18 .on("mousemove", moveLabel);

19

__
Code Bank 18: Implementing Retrieve on the PCP (in: main.js).

Refresh your index.html in Firefox. You’ll notice that brushing a PCP line now evokes the retrieve
operator, placing the dynamic label atop the PCP and highlighting the associated enumeration unit
in the choropleth map. What you should notice, however, is that the PCP lines themselves do not
change their styling and that brushing of the choropleth map does not highlight the associated PCP
line. The second step in coordinating the retrieve interaction is modifying the highlight() and
dehighlight() event handler functions so that they restyle both the enumeration unit in the
map and the line in the PCP. You do not need to update moveLabel(), as it repositions the
dynamic label to any probed location in the body element (i.e., across both the choropleth map and
PCP views).

Logic for highlighting the PCP lines is provided in Code Bank 19. Notice that highlight()

function still modifies the styling of the proper enumeration unit using its adm1_code (CB 19: 3-
7) and still populates the infolabel element, again using the adm1_code (CB 19: 13-23).
However, now an intermediate block has been added to adjust the styling of the proper PCP line,
once again making use of the adm1_code (CB 19: 8-11). Notice that a different highlighting
solution is applied for the map (CB 19: 6) versus the PCP (CB 19: 11). Return to your lecture notes
to consider a better solution for highlighting that maintains highlighting consistency.

1 function highlight(data){

2

3 var props = datatest(data); //standardize json or csv data

4

5 d3.select("#"+props.adm1_code) //select the current province in the DOM

6 .style("fill", "#000"); //set the enumeration unit fill to black

7

8 //highlight corresponding pcp line

9 d3.selectAll(".pcpLines") //select the pcp lines

10 .select("#"+props.adm1_code) //select the right pcp line

11 .style("stroke","#ffd700"); //restyle the line

12

13 var labelAttribute = "<h1>"+props[expressed]+

 "</h1>
"+expressed+""; //label content

14 var labelName = props.name; //html string for name to go in child div

15

16 //create info label div

17 var infolabel = d3.select("body").append("div")

18 .attr("class", "infolabel") //for styling label

19 .attr("id", props.adm1_code+"label") //for label div

20 .html(labelAttribute) //add text

21 .append("div") //add child div for feature name

22 .attr("class", "labelname") //for styling name

23 .html(labelName); //add feature name to label

24 };

Code Bank 19: Highlighting the Choropleth Map (in: main.js).

Finally, modify your custom dehighlight() function to change the PCP lines back to their
original color on mouseout. Refresh your index.html page and preview in Firefox. You now have
made a coordinated visualization!

The final step in implementing the PCP view is adding support of the sequence operator. In Lab #1
and #2, the user was able to sequence by time, with controls supporting animation through the
timestamps or jumping to a single timestamp. For Lab #3, the user still needs to sequence, but
instead through the set of attributes in the multivariate information set (i.e., to adjust which
attribute is represented in the choropleth map). For Lab #3, the axes in the PCP view double as a
direct manipulation widget supporting the sequence operator. When the user clicks on an axis, the
choropleth map will update showing the spatial distribution of values for the associated variable
(whereas mousing over a line retrieves the associated information item). Thus, sequence is
coordinated, but can be evoked only from the PCP.

Implement the sequence operator by first uncommenting the call to the sequence() method that
is called on a click event (CB16g: 87-89). Then, define the sequence() function at the bottom
of main.js (Code Bank 20). The sequence() function is passed the axis element clicked by the

user, along with the complete csvData object (CB20: 1). When the user clicks an axis, the function
changes the width of all axes to the default 5px, then increases the width of the axis passed as a
parameter (CB20: 3-7). The global variable expressed then is updated to reflect the newly

selected attribute in the PCP (CB20: 3-7). Updating the expressed variable ensures that the
dynamic label will draw from the selected attribute upon retrieve (CB19: 13). The final block
restyles the map according to the newly selected attribute and changes each enumeration unit’s
desc element to make the highlight() and dehighlight() functions update the choropleth
styling correctly (CB20: 11-19).

1 function sequence(axis, csvData){

2

3 //restyle the axis

4 d3.selectAll(".axes") //select every axis

5 .style("stroke-width", "5px"); //make them all thin

6

7 axis.style.strokeWidth = "10px"; //change selected axis thickness

8

9 expressed = axis.id; //change the class-level attribute variable

10

11 //recolor the map

12 d3.selectAll(".provinces") //select every province

13 .style("fill", function(d) { //color enumeration units

14 return choropleth(d, colorScale(csvData)); //->

15 })

16 .select("desc") //replace the text in each province's desc element

17 .text(function(d) {

18 return choropleth(d, colorScale(csvData)); //->

19 });

20 };

Code Bank 20: Implementing the Sequence Operator (in: main.js).

Reload your index.html file in Firefox and see the fruits of your labor (Figure 11). You now can
change the variable shown in the map interactively by click on a PCP axis! Take a minute to click
through all axes and information items to make sure that all information is being displayed
properly.

Note that no affordance is provided to indicate that the axes themselves are interactive. On your
own, add two additional components to the PCP: (1) additional event listeners atop the axes to
restyle the axis on mouseover and mouseout and (2) add text labels for the axes to alert to the user
the names of the variables.

You Lab #3 deliverable is an impressive display of modern web mapping using open source and
mobile friendly technologies. You should be proud of the work you have accomplished; to think,
JavaScript was introduced to you only 10 weeks ago! Push yourself to learn new features of D3 by
extending the Lab #3 requirements.

You are encouraged to continue to add functionality to your Lab #3 visualization; you will receive
+5 bonus points for each additional representation and each additional interaction operator, and +2
for implementing a legend for the choropleth map.

Figure 11: Implementing the Sequence Operator

Delivery: You are required to publish a version of your map to your webspace AND upload a .zip of
your entire directory to the Learn@UW Lab #2 Dropbox at least one hour before your lab on April
18th, 2013. While you may receive bonus points by implementing additional views, you cannot
exceed 40 points overall on this assignment.

(7) Basemap: Projection, Generalization, Visual Hierarchy, Etc.
(1) Choropleth Normalization
(1) Choropleth Color Scheme
(1) Choropleth Classification

(6) Coordinate Drawing, Position, and Scaling
(2) PCP Line Legibility
(2) PCP Coordinate Labels

(5) Working Coordination
(2) Affordances/Feedback

(5) Working Coordination
(2) Affordances/Feedback
(2) Information Window Design & Content

(2) Design Clarity and Style
(2) Overall Consideration of Scenario

(+5) Each additional coordinated view
(+5) Each additional operator coordinated across views
(+2) Choropleth Legend

