

 Implement the retrieve and sequence operators and explore additional operators
 Introduce you to skinning and styling UI components using images
 Introduce you to jQuery and jQueryUI

This lab is worth 40 points toward the Lab Assignments evaluation item. A grading rubric
is provided at the end of the lab to inform your work.

 February 21st: Lab #2 Assigned //client contract begins
 February 28th: Work Period //input & feedback from client
 March 7th: Work Period //input & feedback from client
 March 14th: Lab #2 Due //contract deadline

A reporter from the BBC stumbled upon your contribution to the Geography 140 course when
researching a story related to your mapped topic and requested use of the spatiotemporal
visualization as part of the online version of her article; happy to gain the experience (and fill out
your résumé), you have agreed to work with her on the project. The reporter believes that your
animated map will add an interesting presentation element to her article, but thinks that the
addition of more interactivity will improve the user experience by (1) allowing users to customize
their experience with the map, (2) increasing the amount of detail provided in the display upon
request (i.e., overcoming the cartographic problematic), and (3) empowering users with control
over the animation (altogether the why? of Interactive Cartography). The reporter therefore
requests that you: (a) add a dynamic information window for extracting specific information from
the map (i.e., the retrieve operator), (b) add standard controls for manipulating the animation (i.e.,
the sequence operator), and (c) improve the overall website design to match that of the best
interactives published in online newspapers (e.g., NYTimes, WaPo, BBC). Being a novice in
Interactive Cartography herself, she also requested that you (d) add one additional interesting
interaction operator that you think would improve the user experience with the map.

You need not worry about specifics of the story with which the map will be paired, but are
welcomed to redesign your Lab #1 application around a hypothetical story if you desire (and
include it in your website). You must add one new interaction operator, not additional flexibility or
freedom for an existing operator (other than that required for the sequence operator).

The first requirement of the Lab #2 challenge is support of the retrieve operator, allowing users to
request specific values from the proportional symbols. The retrieve operator is a primary way in
which users interactively overcome the cartographic problematic (in the context of Interactive
Cartography) and complete Shneiderman's information seeking mantra of "overview first, zoom
and filter, then details-on-demand” (in the context of Geographic Visualization). As stated in class,
there are three common solutions for supporting the retrieve operator that vary in the amount of
details presented to the user on demand: (1) a dynamic label, providing a minimal amount of
information when probing a feature, (2) an information window, producing a container atop the
map when a feature is clicked, and (3) an information panel, populating an HTML element away
from the map with associated multimedia content. For Lab #2, you are required to implement the
dynamic label solution, described as a popup in the Leaflet library. Before implementing the
retrieve operator, review L.Popup in the Leaflet API Reference for additional information about the
properties, methods, and events available for creating dynamic labels in Leaflet.

Leaflet supports popup menus through binding, or a function that establishes a relationship
between JavaScript objects and interactions / interaction parameters such that an update to the
object also updates the bound elements. In the case of Leaflet popups, the content of the dynamic
label is bound to the Leaflet layer, which again represents a single proportional symbol of type
circleMarker. Thus, the content of the information changes across proportional symbols using
the spatiotemporal information stored in the associated JavaScript object. Code Bank 1 provides
the logic needed to implement the dynamic label using the Leaflet popup; existing code from Lab #1
is shaded in light gray.

Like most elements in a webpage, Leaflet popups contain content that is organized using markup
language (HTML). First, create a string variable named popupHTML to hold the HTML content used
in the popup (CB1: 12-16); add this variable within the onEachFeature()function in main.js,
after the logic for rescaling the proportional symbol. The implementation in Code Bank 1 uses
three variables within the HTML string in order to customize the popupHTML content to a given
proportional symbol: (1) layer.feature.properties[timestamp], which holds the
attribute value at the current timestamp that is used to scale the proportional symbol (CB1: 13),
(2) layer.feature.properties.name, which holds the geographic name (space) of the

proportional symbol (CB1: 15), and (3) timestamp, which holds the current time value of the
animation (CB1: Lines 16).

You are encouraged to add additional information into your csvData.csv spatiotemporal information
set for inclusion in the dynamic label; this may include additional place-based information, short
textual descriptions (remember this is a dynamic label, not an information window), thumbnail
images, or hyperlinks to external references. Your particular implementation of retrieve must
support the identify objective in space, time, and attribute (i.e., the three operands from the TRIAD
framework). Points are reserved for restyling your HTML content to conform to the look and feel of
your webpage; improve your knowledge of HTML5 using the following tutorials:

http://leafletjs.com/reference.html#popup

 Lynda Tutorials (free when logging in as a UW student)
 Codecademy: Web Track (free when logging in as a UW student)
 DoIT STS Training
 Mozilla Developer Network: HTML5 Page
 w3schools

__

1 function onEachFeature(layer) {

2

3 //calculate the area based on the data for that timestamp

4 var area = layer.feature.properties[timestamp] * scaleFactor;

5

6 //calculate the radius

7 var radius = Math.sqrt(area/Math.PI);

8

9 //set the symbol radius

10 layer.setRadius(radius);

11

12 //create and style the HTML in the information popup

13 var popupHTML = "" + layer.feature.properties[timestamp] +

14 " units
" +

15 "<i> " + layer.feature.properties.name +

16 "</i> in <i>" + timestamp + "</i>";

17

18 //bind the popup to the feature

19 layer.bindPopup(popupHTML, {

20 offset: new L.Point(0,-radius)

21 });

22

23 //information popup on hover

24 layer.on({

25 mouseover: function(){

26 layer.openPopup();

27 this.setStyle({radius: radius, color: 'yellow'});

28 },

29 mouseout: function(){

30 layer.closePopup();

31 this.setStyle({color: 'blue'});

32 }

33 });

34 }

__

Code Bank 1: Binding Information and Styling to the Information Popup (in: main.js).

After formatting the popupHTML variable, bind it to dynamic label using the bindPopup()
function included in the Leaflet reference (CB1: 18-21). The bindPopup() function takes two

parameters: (1) the popupHTML variable defining the popup content and (2) the location on the
map where the popup should be centered, relative to the center (0,0) of the circleMarker layer.
The latter parameter should be horizontally centered at 0, but vertically centered at the radius of
the proportional symbol such that the window does not partially cover the proportional symbol.

Finally, indicate the user event that activates and deactivates the dynamic label using the on()
function in Leaflet (CB1: 23-33). Because this is a dynamic label, and not an information window or
information panel, user events related to probing are used: mouseover and mouseout. Keep in
mind that such events work only for indirect pointing devices (i.e., they do not work on tablets

http://www.lynda.com/
http://www.codecademy.com/tracks/web
http://www.doit.wisc.edu/training/student/classlist.aspx
https://developer.mozilla.org/en-US/docs/HTML/HTML5
http://www.w3schools.com/

relying on direct pointing); consider how to apply the dynamic label functionality to a click+hold to
support such devices (hint: make use of the JavaScript timer object).

The mouseover event evokes two behaviors: (1) the dynamic label is activated using Leaflet’s
openPopup() function (the content for which is already bound to the popup; CB1: 26) and (2) the
styling of the proportional symbol is changed to provide additional visual feedback (highlighting) to
the user (CB 1: 27). Again, you are encouraged to revise the default styling (a yellow stroke) used
for highlighting in the Code Bank 1 solution. Similarly, the mouseout event evokes two behaviors:
(1) the dynamic label is deactivated using Leaflet’s closePopup() function (CB1: 30) and (2) the
styling of the proportional symbol is reverted back to its default state, again providing visual
feedback to the user (CB 1: 31).

Figure 1: The Retrieve Operator with Highlighting.

Open Firefox and load your index.html page; you now should have a functional retrieve operator
with highlighting (Figure 1)! For bonus points (2pts per solution), consider how you may be able to
implement multiple retrieve solutions (i.e., retrieve freedom). Increasing retrieve freedom includes
implementing an expanded, persistent information window on a click event (this also makes use
of Leaflet popups, but styled differently) or a linked informational panel with additional

spatiotemporal information on a click event. Because the dynamic label relies on mouseover
and mouseout events, it should not be difficult to support retrieval of additional information on
click.

The second requirement of the challenge is support of the sequence operator, defined as
cartographic interactions that generate and progress through an ordered set of related cartographic
representations. Sequence is different from animation (which you implemented in Lab #1), as the
former is a user-driven event (thus falling within cartographic interaction) while the latter is a
system-driven event (thus falling within cartographic representation). Multiple empirical studies
have shown that users grow frustrated of cartographic animations when not provided interactive
control for manipulating the animation. To circumvent this problem, and empower the user with
control over the animation, you are required to implement seven user interface (UI) controls
supporting flexible sequencing: (1) play, (2) pause, (3) step, (4) step-full, (5) back, (6) back-full, and
(7) a temporal slider, which doubles as a temporal legend. The first six of these features (play,
pause, step, back, step-full, and back-full) still commonly are referred to as VCR controls, despite
the transition away from the video cassette medium; the temporal slider is treated separately in the
next section.

You will use jQuery to coordinate interactions across this array of VCR controls. jQuery
(http://jquery.com) is a JavaScript plug-in that simplifies access to DOM elements for both
representation and interaction. Additionally, jQuery handles many of the browser dependency
issues that otherwise require custom solutions. Because jQuery is the most widely-used JavaScript
library, you are likely to find more interactive mapping implementations on the web using the
condensed jQuery syntax than those using pure JavaScript. Before getting started with jQuery,
review the jQuery API Documentation as well as the following tutorials:

 Lynda Tutorials (Module #11 on JavaScript Libraries)
 Codecademy: jQueryTrack (free when logging in as a UW student)
 DoIT STS Training (JavaScript II)
 w3schools: jQuery Tutorial

Download the jQuery library at http://jquery.com/download/. Because it is a .js file, you will need
to right-click on the “Download the compressed, production jQuery 1.9.1” link and save the jquery-
1.9.1.min.js file to your js folder (Figure 2). You may download the uncompressed, human readable
version to review the set of behaviors provided by jQuery, but it is unlikely that you will extend the
jQuery for Lab #2; thus, do not upload the uncompressed version to your public website. Once
downloaded, add the script to the <body> element of your index.html page (Code Bank 2); the new
<script> element should be added after the leaflet-src.js script, but before the prototype scripts
provided in Lab #1 used to parse csvData.csv. You now can make use of jQuery to implement the
sequence operator!

http://jquery.com/
http://api.jquery.com/
http://www.lynda.com/
http://www.codecademy.com/tracks/jquery
http://www.doit.wisc.edu/training/student/classlist.aspx
http://www.w3schools.com/jquery/default.asp
http://www.w3schools.com/jquery/default.asp
http://jquery.com/download/

Figure 2: Acquiring jQuery (http://jquery.com/download/).

__

1 <body>

2 <!--div for the map-->

3 <div id="map"></div>

4

5 <!--libraries-->

6 <script src="js/leaflet-src.js"></script>

7 <script src="js/jquery-1.9.1.min.js"></script>

8

9 <!--link to CSV prototype functions-->

10 <script src="js/EventTarget.js"></script>

11 <script src="js/ProcessCSV.js"></script>

12

13 <!--link to main javascript file-->

14 <script src="js/main.js"></script>

15 </body>

__

Code Bank 2: Adding the jquery-1.9.1.min.js Script (in: index.html).

Support of the sequence operator begins by designing the graphics constituting the VCR controls.
For Lab #2, you will make use of .png images for all UI components; Lab #3 describes an alternative
use of .svg files for UI components. The use of .png images for UI components is common across web
design contexts, interactive mapping including, with the UI images positioned and styled in the
webpage like other HTML elements. A collection of default images for the VCR controls are available
at Learn@UW in the vcr-controls.zip compressed folder. Download vcr-controls.zip, save it to your
img directory, and extract the files into the img folder (Right-Click -> Extract to here…).

Figure 3: Skinning the VCR Controls.

The vcr-controls.zip compressed folder contains seven files: one .png image for each of the six VCR
controls and an .ai file named vcr-controls.ai containing the original artwork in vector format. Open
the vcr-controls.ai file and inspect its contents (Figure 3). The vector graphics associated with each
VCR control are organized as separate layers in Illustrator. These layers overlap, as each VCR
control was designed using the same bilateral grid (height=32px, width=48px). While the shape of
VCR controls is standardized, you are encouraged to experiment with the size and styling of the

controls; adjusting the default size and styling of UI images often is described as skinning. Be sure
that any change to a single VCR control also is applied to all others for consistency. Once you update
the VCR controls to match the look and feel of your website, re-export them from Illustrator as .png
files (File -> Export…), keeping only one layer visible at a time. The exported .pngs should overwrite
the existing images in your img folder, meaning that you can continue to modify them through
development of your website with minimal update to the code.

Once you have processed the images for your VCR controls, you then can add them to your
index.html page using the element (Code Bank 4). It is convention to arrange the VCR
controls horizontally in the following order: (1) back-full.png, (2) back.png, (3) play.png, (4)
pause.png, (5) step.png, and (6) step-full.png. While you can experiment with the position and
spacing of these buttons, be sure that the play.png and pause.png are placed adjacent to one
another; JavaScript is used in the next subsection to make one of these two controls invisible at all
times, since play and pause buttons perform inverse functions. Be sure to provide alternative (alt)
text for each image for screen reader support. The six images are organized within a <div>

element named vcr-controls to provide consistent padding along the outside of the VCR
controls (CB4: 6).

__

1 <body>

2 <!--div for the map-->

3 <div id="map"></div>

4

5 <!--vcr controls-->

6 <div id="vcr-controls">

7 <img src="img/back-full.png" alt="back

 full"/>

8

9

10

11

12 <img src="img/step-full.png" alt="step

 full"/>

13 </div>

14

15 <!--libraries-->

16 <script src="js/leaflet-src.js"></script>

17 <script src="js/jquery-1.9.1.js"></script>

18

19 <!--link to CSV prototype functions-->

20 <script src="js/EventTarget.js"></script>

21 <script src="js/ProcessCSV.js"></script>

22

23 <!--link to main javascript file-->

24 <script src="js/main.js"></script>

25

26 </body>

__

Code Bank 3: Laying Out the VCR Controls (in: index.html).

Each element in Code Bank 3 is wrapped by an <a> (anchor) element in order to give each
image an id in the DOM for JavaScript referencing (back-full, back, play, pause, step, and
step-full, respectively) and to assign each image to broader style class called vcr for consistent
styling in CSS (Code Bank 4). Before moving back to main.as, return to style.css and add three styles
to the new created VCR controls: (1) set the margin and padding for the vcr-controls
wrapper (CB4: 1-4), (2) set the float, margin, width, and height of each image instantiating
the vcr class (CB4: 5-10), and (3) set the opacity of images instantiating the vcr class to .4 on
hover to provide a visual affordance to the user that the VCR controls are interactive (CB4: 11-
13).

__

1 #vcr-controls {

2 margin: 8x 0 0 5px;

3 padding: 3px;

4 }

5 .vcr {

6 float: left;

7 margin-right: 3px;

8 width: 48px;

9 height: 32px;

10 }

11 .vcr:hover {

12 opacity: .4;

13 }

__

Code Bank 4: Styling the VCR Controls (in: style.css).

Return to Firefox and refresh the index.html page. You now should see your six VCR controls aligned
horizontally beneath the map (Figure 4). Probing the controls also should result in a style change,
making them appear light gray due to the change in transparency. You are encouraged to revise the
code in Code Banks 3 and 4 to place the VCR controls in a position of your liking; use this as an
opportunity to improve your knowledge of CSS using the following tutorials:

 Lynda Tutorials
 Codecademy: Web Track (free when logging in as a UW student)
 DoIT STS Training
 Mozilla Developer Network: CSS Page
 w3schools

You now are ready to implement the sequence behaviors using jQuery and the processed VCR
controls. In Lab #1, you programmed your spatiotemporal visualization to animate when the page
is loaded and did not provide functionality to stop the animation. For Lab #2, the animation should
only start upon user interaction, with the animation paused upon loading. Before adding behaviors
to any of the sequence components, remove the function call to animateMap() at the very end of
the createMarkers() function; after doing so, reload index.html in Firefox to ensure that the
animation does not start automatically upon page load.

http://www.lynda.com/
http://www.codecademy.com/tracks/web
http://www.doit.wisc.edu/training/student/classlist.aspx
https://developer.mozilla.org/en-US/docs/CSS
https://developer.mozilla.org/en-US/docs/CSS
http://www.w3schools.com/

Figure 4: Laying Out and Styling the VCR Controls.

The animation instead will be controlled interactively using the sequence operator. Add the
appropriate sequence behaviors to the play and pause controls by defining a new function named
sequenceInteractions() (Code Bank 5). The sequenceInteractions() function must

be called at the end of the setMap() function so that the UI events are configured after the
window is loaded (not shown in Code Bank 5). The play and pause controls are accessed in the
DOM using jQuery syntax; the $ symbol replaces a call to the lengthier getElementByID()
function in JavaScript.

Within the sequenceInteractions() function, first make the pause control invisible using
the hide() function in jQuery (CB5: 3); the pause control is hidden—and not the play control—
because the animation is stopped upon loading. Next, define the behavior for the play control
(CB5: 5-10); when the user clicks the play control, the visibility of the play and pause controls
is toggled using the jQuery show() and hide() functions (CB5: 7-8) and the animateMap()
function is then called (CB5: 9). Then, define the behavior for the pause control (CB5: 12-16),
which inversely toggles the visibility of the play and pause controls (CB5: 13-14) and
subsequently calls a new stopMap() function (CB5: 15).

__

1 function sequenceInteractions(){

2

3 $(".pause").hide();

4

5 //play behavior

6 $(".play").click(function(){

7 $(".pause").show();

8 $(".play").hide();

9 animateMap();

10 });

11

12 //pause behavior

13 $(".pause").click(function(){

13 $(".pause").hide();

14 $(".play").show();

15 stopMap();

16 });

17 }

__

Code Bank 5: Adding Sequence Behaviors to play and pause (in: main.js).

The final step in implementing the play and pause controls is definition of the new stopMap()
function (Code Bank 6). The stopMap() function is the conceptual opposite of the
animateMap() function, calling the clearInterval() function in JavaScript to stop the timer

object initialiezd in animateMap(), which itself calls step() at a regular interval to play through
the animation (return to Lab #1 for details). Once adding stopMap() to main.js, refresh the
index.html page in Firefox; you now should see only five controls, with the pause control hidden
when the page loads. You now have implemented the sequence operator!

1 function stopMap() {

2 clearInterval(timer);

3 }

__

Code Bank 6: Stopping the Animation (in: main.js).

After implementing the play and pause controls, improve sequence flexibility by implementing a
second pair of controls for progressing the animation forward in time: (1) step (advance one

timestamp in the animation) and (2) step-full (advance to the last timestamp in the
animation). As with the play and pause controls, behaviors for the step and step-full
controls again are defined in the sequenceInteractions() function (Code Bank 7).

Behavior for the step and step-full controls is simpler than that for play and pause, as the
step and step-full buttons remain on the webpage at all times. When a user clicks the step
control, the existing step() function is called (CB7: 18-21). Because step() is called directly—
rather than from the animateMap() function (using the timer object)—the code within step()
will be executed only once, advancing the animation only one timestamp.

__

1 function sequenceInteractions(){

2

3 $(".pause").hide();

4

5 //play behavior

6 $(".play").click(function(){

7 $(".pause").show();

8 $(".play").hide();

9 animateMap();

10 });

11

12 //pause behavior

13 $(".pause").click(function(){

13 $(".pause").hide();

14 $(".play").show();

15 stopMap();

16 });

17

18 //step behavior

19 $(".step").click(function(){

20 step();

21 });

22

23 //step-full behavior

24 $(".step-full").click(function(){

25 jump(2011); //update parameter value with last timestamp

26 });

27 }

__

Code Bank 7: Adding Sequence Behaviors to step and step-full (in: main.js).

When a user clicks the step-forward control, a new jump() function is called, passing the value of

the last timestamp as the parameter (CB7: 23-26). The jump() function, as compared to the
step() function, is an excellent example of increased interface freedom, or the ability to complete
a given interaction with more precision. While step() supports the advancement of a single

timestamp, jump() allows the user to advance forwards or backwards to any timestamp (Code
Bank 8). The jump() function first sets the global timestamp variable to the parameter passed in
the function call (the final timestamp, in the case of step-full behavior). Like step(), jump()
then calls onEachFeature() for each layer in the in the global markersLayer, updating the
proportional symbols and bound dynamic labels according to the new value of timestamp.

__

1 function jump(t){

2

3 //set the timestamp to the value passed in the parameter

4 timestamp = t;

5

6 //upon changing the timestamp, call onEachFeature to update the display

7 markersLayer.eachLayer(function(layer) {

8 onEachFeature(layer);

9 });

10 }

__

Code Bank 8: Adding Sequence Freedom through jump() (in: main.js).

The instructions and code banks in Sections #2 provide you with the details needed to implement
four VCR controls: play,.;/ pause, step, and step-full. Take what you have learned about
implementing these UI components to implement the final pair of VCR controls: back and back-
full. The back and back-full controls are the conceptual opposite of the step and step-

full controls, rewinding the animation rather than advancing it. Think carefully about how to
implement back and back-full:

 How do you reference these images in the DOM using jQuery?
 How do you listen for user events, such as click?

 Where should these event listeners be placed in the overall flow of execution?
 What functions should be called from the event handlers?

 How must you modify step() to move backwards rather than forwards?

 Can you make use of jump() for the back-full control?

Solutions for back and back-full will be discussed during the second work week for Lab #2.

The final step in supporting sequence flexibility is implementation of a temporal slider. A slider is a
UI widget that allows users to set the value of an ordinal or, more commonly, numerical variable;
checkboxes (allowing compound selection of multiple values) or radio buttons (constraining
selection to a single value in a set) are used for categorical variables. A temporal slider thus allows
the user to set the current timestamp with complete freedom, updating to map to any desired
representation in the sequence; a slider widget works best for depictions of linear time rather than
cyclical time, following a timeline metaphor rather than a clock metaphor. Slider widgets also are
common for the filter operator when applied to a numerical variable, although they typically
include a pair of slider controls (i.e., thumbs) for manipulating the minimum and maximum
parameters of the filter operation. The temporal slider for sequence makes use of a single thumb.

You will be using jQueryUI to implement the temporal slider. jQueryUI (http://jqueryui.com/) is a
plugin library for jQuery that supports a range of common, indirect UI widgets. The jQueryUI plugin
includes both default graphics needed for the interface widgets as well as associated events and
effects for implementing these widgets. Before getting started with jQueryUI, review the jQueryUI
API Documentation and the jQueryUI Demos pages; example implementations of and associated
source code for the jQueryUI Slider widget are provided at http://jqueryui.com/slider/.

Download the jQueryUI plugin at http://jqueryui.com/download/. After navigating to the
download page, choose the “1.10.1” option under “Version” (Figure 5a) and check the “Toggle All”
option under “Components” (Figure 5b). Unlike jQuery itself—which is extremely pervasive across
interactive web design—the jQueryUI plugin may not be advantageous in all interaction design
situations, as it is both quite large (it will increase the load time of your webpage) and less stable
than jQuery. However, jQueryUI does allow for “custom” downloads that include only portions of

http://jqueryui.com/
http://api.jqueryui.com/
http://api.jqueryui.com/
http://jqueryui.com/demos/
http://jqueryui.com/slider/
http://jqueryui.com/download/

the overall library with significantly reduced file sizes. For now, download the complete jQueryUI
library in order to explore its contents; consider replacing the complete download with a reduced
download before posting your spatiotemporal visualization to the web in order to minimize the file
size.

Figure 5: Acquiring jQueryUI (http://jqueryui.com/download/).

Before downloading the complete jQueryUI plugin, use the jQueryUI ThemeRoller to create a look
and feel for the UI widgets that match your overall interface design (Figure 5c). Although the
button icons and several other components of the jQueryUI make use of flat image files, much of the
styling of the UI widgets is controlled using CSS. The jQueryUI ThemeRoller allows you to adjust the
default CSS rules used to style the UI widgets, ultimately allowing you to blend custom UI interface
widgets (i.e., the VCR controls) with jQueryUI widgets. The resulting style rules are included in a
stylesheet called jquery-ui-1.10.1.custom.css in the overall jQueryUI download. While you can
continue to adjust the CSS rules within the jquery-ui-1.10.1.custom.css file, it is helpful to work with
the jQueryUI ThemeRoller as much as possible prior to download to ensure design consistency
across widgets. You also are encouraged to explore the jQueryUI ThemeRoller to continue to
improve your understanding of CSS style rules and their impact on interface designs.

After you have customized the styling, download the jQueryUI plugin (Figure 5d); the plugin is
provided as a compressed library (.zip) named jquery-ui-1.10.1.custom.zip. It is conventional to
store complex libraries like the jQueryUI plugin in a separate project folder named lib, as
reorganization of the library into the existing css, data, img, and js folders often breaks local links
within the library; such an approach also helps separate your own, custom code from the code
libraries drawn from other sources. Return to the root project directory and add a fifth folder
named lib. Then, copy the jquery-ui-1.10.1.custom.zip file into the lib folder and extract its contents
into the lib folder (Right-Click -> Extract to here…).

1 <head>

2 <meta charset="utf-8">

3 <title>Cities Map</title>

4

5 <!--main stylesheet-->

6 <link rel="stylesheet" href="css/style.css" />

7

8 <!--leaflet stylesheet-->

9 <link rel="stylesheet" href="css/leaflet.css" />

10 <!--[if lte IE 8]>

11 <link rel="stylesheet" href="css/leaflet.ie.css" />

12 <![endif]-->

13

14 <!--jQueryUI stylesheet-->

15 <link rel="stylesheet" href="lib/jquery-ui-1.10.1.custom/css/custom-

theme/jquery-ui-1.10.1.custom.css" />

16 </head>

__

Code Bank 9: Adding the jquery-ui-1.10.1.custom.css Stylesheet (in: index.html).

The final step in installing the jQueryUI plugin is to reference the library in your index.html page.
First, add a <link> element to reference the jquery-ui-1.10.1.custom.css stylesheet you created
through the jQueryUI ThemeRoller (CB 9: 14-15); the <link> element must be added to the

<head> element after other stylesheets are referenced. Next, add a <script> element to
reference the jquery-ui-1.10.1.custom.min.js script containing the logic for manipulating and styling
the jQueryUI widgets (CB 10: 21); the <script> element must be added to the <body> element
after the jquery-1.9.1.min.js script is referenced, as it relies on this file.

http://jqueryui.com/themeroller/

Note how the paths for the jQueryUI file references are much longer than those for the other
stylesheets and scripts added to the index.html file. This is because of the decision to maintain the
jQueryUI plugin in the lib folder, rather than reorganize it according to the pre-existing directory
structure. You are encouraged to explore the contents of the jQueryUI folder as a way of
understanding how the assorted files are related to one another. You now can make use of jQueryUI
to implement a timeline slider, as well as other operators!

__

1 <body>

2 <!--div for the map-->

3 <div id="map"></div>

4

 5 <!--vcr controls-->

6 <div id="vcr-controls">

7 <img src="img/back-full.png" alt="back

 full"/>

8

9

10

11

12 <img src="img/step-full.png" alt="step

 full"/>

13 </div>

14

15 <!--div for the timestamp slider-->

16 <div id="temporalSlider"></div>

17

18 <!--libraries-->

19 <script src="js/leaflet-src.js"></script>

20 <script src="js/jquery-1.9.1.min.js"></script>

21 <script src="lib/jquery-ui-1.10.1.custom/js/

jquery-ui-1.10.1.custom.min.js"></script>

22

23 <!--link to CSV prototype functions-->

24 <script src="js/EventTarget.js"></script>

25 <script src="js/ProcessCSV.js"></script>

26

27 <!--link to main javascript file-->

28 <script src="js/main.js"></script>

29 </body>

__

Code Bank 10: Adding the jquery-ui-1.10.1.custom.js Script (in: index.html).

To implement the temporal slider, first add a <div> element to your index.html page to hold the
jQueryUI Slider widget (CB 10: 15-16); the id attribute of the <div> element must be

temporalSlider for the remaining code banks to work properly. Note that in Code Bank 10, the
temporalSlider is placed after the vcr-controls. This placement is arbitrary; you are
encouraged to experiment with the layout of these sequence controls.

Next, add rules for laying out the temporalSlider in style.css. As stated above, the jquery-ui-
1.10.1.custom.css stylesheet included in the jQueryUI download contains many of the rules for
styling the temporalSlider, including visual affordances and feedback. However, you must add rules

for placing the temporalSlider within your webpage (Code Bank 11). This includes setting the
margin around the temporalSlider (CB 11: 2), which impacts how it will align with the vcr-
controls <div>, as well as setting the width (i.e., length) of the temporalSlider (CB 11: 3).
Again, experiment with the placement of the temporalSlider to get a layout of your liking. Once

you have laid out the temporalSlider, return to Firefox and refresh your webpage; you now
should have a jQueryUI Slider widget placed on the page, although it will not yet update the map in
any way (Figure 6)!

__

1 #temporalSlider {

2 margin: 10px 20px 0 270px;

3 width: 500px;

4 }

__

Code Bank 11: Laying Out the temporalSlider (in style.css)

Figure 6: Adding a Slider widget for Free and Flexible Sequence

1 function sequenceInteractions(){

2

3 $(".pause").hide();

4

5 //play behavior

6 $(".play").click(function(){

7 $(".pause").show();

8 $(".play").hide();

9 animateMap();

10 });

11

12 //pause behavior

13 $(".pause").click(function(){

14 $(".pause").hide();

15 $(".play").show();

16 stopMap();

17 });

18

19 //step behavior

20 $(".step").click(function(){

21 step();

22 });

23

24 //step-full behavior

25 $(".step-full").click(function(){

26 jump(2011); //update with last timestamp

27 });

28

29 //back behavior

30 $(".back").click(function(){

31 back();

32 });

33

34 //back-full behavior

35 $(".back-full").click(function(){

36 jump(2005); //update with first timestamp

37 });

38

39 $("#temporalSlider").slider({

40 min: 2005,

41 max: 2011,

42 step: 1,

43 animate: "fast",

44 slide: function(e, ui){

45 stopMap();

46 timestamp = ui.value;

47 markersLayer.eachLayer(function(layer) {

48 onEachFeature(layer);

49 })

50 }

51 });

52 }

__

Code Bank 12: Adding Sequence Behaviors to temporalSlider (in: main.js). Note that a

solution for back and back-full has been added.

After placing the temporalSlider in your webpage, return to main.js to implement the free
sequence behavior that occurs when the user interacts with the slider. Like the other sequence

controls, this behavior is defined within the sequenceInteractions() function (Code Bank
12); again, this function is called upon initialization of the webpage from the setMap() function.
The Slider widget is instantiated by calling the jQueryUI slider() prototype function on the
temporalSlider <div>; note the continued use of jQuery to reference the <div>.

The slider() function takes several parameters: (1) min, or the first timestamp in the sequence
(CB 12: 40), (2) max, or the last timestamp in the sequence (CB 12: 41), (3) step, or the
interaction freedom provided for moving between timestamps (CB 12: 42), (4) animate, or the

effect given to the slider when the thumb position is updated (CB 12: 43), and (5) slide,
providing a function definition for the behavior that occurs upon a slide event (CB 12: 44-50).
Return to the jQueryUI Slider API Documentation for additional details about the Slider widget.

The slide event handler performs three actions. First, the stopMap() function is called to stop

the animation, if currently playing (CB 12: 45). Because the temporalSlider provides free
sequence interaction, it is likely that users will interact with it to set a particular timestamp, rather
than rewind or fast-forward the animation (but keep the animation playing). Second, the
timestamp variable is updated according to the value attribute of the temporalSlider (CB
12: 46). If you properly set the min and max properties of the temporalSlider, you should not
need to do any additional math to calculate the timestamp variable. Finally, the Leaflet

eachLayer() function is called on the markersLayer in order to call the onEachFeature()
function, which again updates the radius and popup content for each proportional symbol (CB 12:
47-49).

Return to Firefox and refresh you webpage. You now have a functional temporal slider that
sequences through your spatiotemporal information! However, your work is not yet complete.
When implementing flexible interaction, it is important that interaction with one implementation of
an operator updates the parameters and visual affordances of the other implementations.
Currently, interaction with any of the VCR controls does not update the thumb position of the
temporalSlider, producing an error related to the gulf of evaluation in which the user may
think their interaction did not work because the temporalSlider thumb was not advanced.

Add a function named updateSlider() at the bottom of the main.js file to update the
temporalSlider when the timestamp variable is changed using a different implementation of
sequence; this function should not be added within the sequenceInteractions() function
(Code Bank 13). The updateSlider() function changes the value property of the
temporalSlider (CB 13: 5). As a result, the temporalSlider thumb will move to the
appropriate position whenever the updateSlider() function is called (using the fast transition
effect, as set in Code Bank 12). Finally, add a call to the updateSlider() function within three
existing functions: (1) step(), (2) back(), and (3) jump(). The temporal slider now will update
correctly when sequence is performed using any of the VCR controls.
__

1 function updateSlider(){

2

3 //move the slider to the appropriate value

5 $("#temporalSlider").slider("value",sliderval);

6 }

__

Code Bank 13: Updating the temporalSlider for Sequence Flexibility (in: main.js).

http://api.jqueryui.com/slider/

The final step in implementing the temporal slider for sequence is modification of the temporal
slider such that it doubles as a temporal legend, indicating the current timestamp. This includes two
interface design components: (1) visual affordances indicating all possible timestamps to which the
user may jump (i.e., adding tic marks along the temporal slider) and (2) visual feedback indicating
the current timestamp selected by the user, whether by the temporal slider or other sequence
controls (you already may have implemented this for extra credit in Lab #1). Think about how you
may implement these visual affordances and feedback in your application. Do you need to add these
affordances through JavaScript, or if you can add these details through HTML5 and CSS alone; what
are the relative advantages and limitations of these different approaches? Consider the various
Slider widget implementations provided at the jQueryUI Demos page; can any of these be modified
to fit your needs? Finally, be sure that your final solution matches the look and feel of your overall
webpage design as well as properly fits the design scenario.

Now that you have implemented both the retrieve and sequence operators using the provided Code
Bank references, it is time to try your hand at a third operator on your own. You must add at least
one additional operator discussed in class, but are encouraged to provide additional operators to
improve the user experience. Adding addition freedom or flexibility for the sequence or retrieve
operators does not count towards your third operator, although again you are encouraged to add
such additional freedom or flexibility. Think back to lecture discussion of the how? question when
choosing an appropriate third operator; individual operators may be more or less appropriate in
the Lab #2 content of Interactive Cartography. As always, be sure to keep the design scenario and
anticipated uses of your interactive map in mind.

http://jqueryui.com/slider/

Delivery: You are required to publish a version of your map to your webspace AND upload a .zip of
your entire directory to the Learn@UW Lab #2 Dropbox at least one hour before your lab on March
14th, 2013. While there are many opportunities for bonus points, you cannot exceed 40 points
overall on this assignment.

(2) Popup Content (space+time+attribute)
(2) Popup HTML Design
(+2) Retrieve Freedom

(2) Play
(2) Pause
(2) Back-Step
(2) Back-Full
(2) Forward-Step
(2) Forward-Full
(2) Slider
(4) Sequence Interface Design (Skinning)

(8) Interaction Functionality
(2) Interaction Design
(+2) Additional Operators

(1) Basemap: Projection Centering
(1) Proportional Symbols: Scaling and Styling
(1) Proportional Symbol Legend (required for Lab #2)
(1) Temporal Legend (required for Lab #2)

(2) Consideration of Additional Operator for Scenario
(2) Surrounding Webpage Design (improvements from Lab #1 + consideration of scenario)

