

 Introduce you to JavaScript and the Leaflet.js mapping library
 Introduce you to NotePad++ and Firebug development tool
 Dynamically load, map, and animate a spatiotemporal information set

This lab is worth 20 points toward the Lab Assignments evaluation item, which is worth
25% of your overall course grade. A grading rubric is provided at the end of the lab to
inform your work.

 January 31st: Lab #1 Assigned //client contract begins
 February 7th: Information Check-In //initial research completed
 February 14th: No Lab; schedule w/ DoIT //input & feedback from client
 February 21st: Lab #1 Due //contract deadline

You have been invited by Professor Kris Olds to contribute dynamic content to the World Regions in
Global Context course (Geography 340), an introductory course on regional development. The G340
course leverages web-based technologies to bring students and experts together from around the
globe to discuss the geographic phenomena and processes (i.e., space over time) constituting the
cultural and natural worlds. Professor Olds has requested that you contribute to the course
material by developing an example spatiotemporal visualization that "makes visible" some regional
geographic phenomenon or process for structuring in-class discussion. Professor Olds has
recommended that you map spatiotemporal information collected about cities—given his expertise
in Urban Geography—making proportional symbols the appropriate thematic map approach; the
specific geographic phenomena/processes portrayed by the spatiotemporal visualization remains
your choice. The final webpage should prompt hypotheses about the underlying drivers of the
spatiotemporal pattern/process to promote discussion in the course.

Your spatiotemporal visualization must include at least 15 point locations, with each point location
exhibiting variation across at least 7 timestamps (e.g., days, months, years, decades). The point
locations can be either within a single country or across a larger region. While you are required to
design a proportional symbol map (i.e., not a choropleth map, dot density map, etc.), you may
choose to map a spatiotemporal information set that is aggregated to units other than cities with
permission from the course instructor.

In this lab, you will use a simple parsing script to dynamically load information from a spreadsheet
file and use Leaflet to draw and animate proportional symbols representing that information atop a
slippy web map. Leaflet is one of many available JavaScript libraries or APIs now available for
publishing tile-based web maps. Leaflet is quickly growing in popularity within the web
development community because it is both lightweight (it is only 28kb of code) and open source
(meaning you both can view how it functions and extend it to fit your needs). Maps produced using
Leaflet can draw from a variety of basemap tile services and are viewable on mobile devices;
because of its use of scalable vector graphics (.svg) for drawing vector overlays (described below),
maps produced using Leaflet are not compatible with older versions of Internet Explorer (before
IE9) without a considerable work-around. Additional information about Leaflet is available at:
http://leafletjs.com/

In the following lab tutorial, all code samples are shown in Notepad++, a simple, free, and powerful
open-source text editor. Notepad++ is available on all Science Hall lab computers and can be
downloaded for use on your own machine at: http://notepad-plus-plus.org/. You may use other
text editors or web-scripting software, such as Aptana (another popular open-source package),
TextWrangler (for Mac), and Dreamweaver (a proprietary product from Adobe). Also, the following
lab tutorial uses the Mozilla Firefox browser (http://www.mozilla.org/en-US/firefox/fx/#desktop)
and the Firebug development tool for Firefox (https://getfirebug.com/) for previewing and
debugging your spatiotemporal visualization. Developer tools in Chrome also work well.

The following tutorial assumes that you have a basic understanding of HTML5, CSS, and JavaScript;
please use the following resources to review these languages, if needed:

 Lynda Tutorials (free when logging in as a UW student)
 Codecademy (free when logging in as a UW student)
 DoIT STS Training
 Mozilla Developer Network
 w3schools

The first step towards completing the challenge is the assembly of appropriate spatiotemporal
(space+time) information regarding an urban pattern or process. In G370, several sources of
geographic information were introduced, including the ArcGIS data bank, Natural Earth,
GeoCommons, and Wikipedia; the latter two are particularly helpful for finding statistical
information that has a temporal component (i.e., the same geographic information, but captured
multiple times). Because proportional symbol maps leverage the visual variable size, you only
should map information that is at the ordinal or, preferably, numerical level of measurement (i.e.,
do not collect categorical information). Be sure that the information you acquire tells a compelling
story and/or reveals new insight into the geographic pattern/process.

In order to leverage the following code banks, you need to format your spatiotemporal information
set with the unique map features (e.g., cities, regions) included as rows and the unique

http://leafletjs.com/
http://notepad-plus-plus.org/
http://www.mozilla.org/en-US/firefox/fx/#desktop
https://getfirebug.com/
http://www.lynda.com/
http://www.codecademy.com/tracks/javascript
http://www.doit.wisc.edu/training/student/classlist.aspx
http://developer.mozilla.org/en-US/docs/JavaScript/Guide
http://www.w3schools.com/

timestamps (generically describing either a single moment in time or a time interval) included as
columns (Figure 1). Include an additional pair of columns at that start of your file for a unique ID
and name field; because Leaflet natively understands the geographic coordinate system, you also
must include a pair of columns for the latitude and longitude of the proportional symbol anchor
(e.g., the city center, the centroid of the region). Be sure to use logical header names (e.g., “name”,
“latitude”, “2005” etc.), as these terms are used as attribute keys for referencing the spatiotemporal
information using JavaScript. While you may use any spreadsheet software (e.g., Excel, Google docs,
Notepad++) to assemble your information set, you need to save your table to the .csv (comma
separated values); the following code banks use the filename “csvData.csv”.

Figure 1: An Example Spatiotemporal Information Set. In the table, each map feature should be
included as a row while the lat/long coordinates and timestamps should be included as columns.
Note: The above information is meaningless and does not describe any real spatiotemporal
phenomenon or process.

The first step in creating your spatiotemporal visualization is to prepare your directory. First create
a project directory (folder) for your website, giving it a logical name (e.g., “g575-lab1”), and then
create four folders within the project directory named "css", "data", “img”, and "js" to store the
different types of files related to your website. Place the .csv file you assembled in Section 1b in the
data folder.

Open Notepad++ and create a new file (File->New). Save the file in the parent directory (i.e., not
with in a subfolder) using the name “index.html” (File->Save as…); the “index.html” file serves as the
landing page for your spatiotemporal visualization. Once you have created the file, add the
boilerplate text provided in Code Bank 1 needed for all webpages; change the content of the
<title> element to something logical for your spatiotemporal visualization.

__

1 <!DOCTYPE HTML>

2 <html>

3 <head>

4 <meta charset="utf-8">

5 <title>My Spatiotemporal Visualization</title>

6 </head>

7 <body>

8 </body>

9 </html>

__

Code Bank 1: Basic HTML5 Boiler Plate (in: index.html).

The first html element to add to your boilerplate is a <div> element that contains the map served
by Leaflet. The <div> element should be added to the <body> of index.html and have an id
attribute of "map" for referencing by stylesheets and scripts (Code Bank 2: Lines 2-3)

__

1 <body>

2 <!--div for the map-->

3 <div id="map"></div>

4 </body>

__

Code Bank 2: Preparing the <body> Element (in: index.html).

Next, create a second file in Notepad++, this time saving it as a stylesheet (.css) with the name
“style.css”; your stylesheet should be saved in the css folder. Once created, add the <link> element
to .css file in the <head> element of index.html, pointing to the directory location of style.css (Code
Bank 3: Line 5-6).

__

1 <head>
2 <meta charset="utf-8">

3 <title>Cities Map</title>

4

5 <!--main stylesheet-->

6 <link rel="stylesheet" href="css/style.css" />

7 </head>

__

Code Bank 3: Referencing the style.css Stylesheet (in: index.html).

The style.css stylesheet contains all rules for positioning and styling your webpage, including both
the central spatiotemporal visualization and the surrounding HTML5 elements. Code Bank 4
provides the basic rules needed to view the <div> element containing your map; you are
encouraged to adjust the position and size of your map based on your design vision for the scenario.
Although the emphasis in Lab #1 is on the map itself, and the JavaScript needed to implement it, be
sure to add additional elements to index.html that are needed for a professional-looking webpage
and to style them using the style.css stylesheet (this is worth a portion of your grade).

__

1 body {

2 width: 100%;

3 height: 100%;

4 margin: 5px;

5 font-family: "Helvetica Neue", Arial, Helvetica, sans-serif;

6 }

7

8 #map {

9 height: 400px;

10 width: 800px;

11 }

__

Code Bank 4: Styling the <div> Element Containing the Map (in: style.css).

Finally, create a third file in Notepad++, this time saving it as a JavaScript (.js) file with the name
“main.js”; save it to the js folder. The main.js file contains the logic (code) needed to execute your
spatiotemporal visualization. While you could include this code within a <script> element in the
index.html file, it is better practice to keep lengthier blocks of code organized in separate files; such
practice also promotes reusability of code. Once created, reference main.js in the <body> of the
index.html file using the <script> element, following the existing <div> element for the map
(Code Bank 5: Line 5-6).

__

1 <body>

2 <!--div for the map-->

3 <div id="map"></div>

4

5 <!--link to main javascript file-->

6 <script src="js/main.js"></script>

7 </body>

__

Code Bank 5: Referencing the main.js JavaScript file (in: index.html).

Before moving onto the next step, check to see if your file structure and webpage files are properly
configured. The primary method for debugging scripts is by printing a message to the error console
using the console.log() method in JavaScript. To demonstrate its utility, and confirm that your
webpage is properly configured, add a script to print to the console in the main.js file (Code Bank
6).

__

1 console.log("hello world!");

__

Code Bank 6: Debugging Scripts with the Console (in: main.js).

Once added, open index.html in Firefox; at this point, it should be a blank webpage (Figure 2).
Activate Firebug by clicking the Firebug icon; you may need to Enable All Panels in the Firebug
dropdown option, if not already enabled. Once activated, click the console tab and reload the page.

Figure 2: Debugging using the Error Console in Firebug.

You should see your "hello world" as a line of text, with its line number in the file it originates from
shown on the far right.

Now that you have a basic webpage configured—and understand how to debug this webpage using
Firebug—you can add the Leaflet source code. As introduced above, information about Leaflet is
available at: http://leafletjs.com/. Throughout G575, it is important that you get comfortable
reviewing the Leaflet API Reference, available at: http://leafletjs.com/reference.html. The Leaflet
API Reference provides an overview of all classes included in the Leaflet source code, with a
description and code example of each class’s associated properties, methods, and events; the G575
labs introduce only a portion of the total Leaflet functionality available for your final project.

You need to download the Leaflet JavaScript source code before you can leverage it in your
spatiotemporal visualization. To download the library, navigate to the Leaflet Github page
(https://github.com/Leaflet/Leaflet) and click on the “ZIP” icon (Figure 3). Make sure that the
branch you are acquiring is the “stable” version (branch->stable).

http://leafletjs.com/
http://leafletjs.com/reference.html
https://github.com/Leaflet/Leaflet

Figure 3: Acquiring the Leaflet Library.

Save the .zip file to your desktop and extract it to a folder. You only need to copy a portion of the
downloaded library into your project directory, as Leaflet provides two version of its source code in
the dist folder: (1) a human-readable version (dist/leaflet-src.js) and (2) a condensed version
(dist/leaflet.js) that runs slightly faster, but only in the range of milliseconds. It is recommended
that you make use of the human-readable version in the G575 labs to learn how the leaflet.js
functionality is working, and thus how to modify and extend this functionality for your final project.
Copy the following files/folders to your project directory:

 Copy the dist/leaflet-src.js file and the dist/images folder into your js project folder; do
not copy the dist/images folder into your img project folder, as the latter is for
additional images added to your webpage.

 Copy the dist/leaflet.css and dist/leaflet.ie.css files into your css project folder.

One copied to your project directory, you need to reference the Leaflet source files in index.html.
The reference to the stylesheets should be included in the <head> element (Code Bank 7); the pair
of stylesheets is needed to layout and style the map differently if viewed in Internet Explorer (Code
Bank 7: Lines 10-12). The reference to leaflet-src.js should be included in the <body> element,
before linking to main.js (as the code in main.js makes use of code in leaflet-src.js; Code Bank 8).

__

1 <head>

2 <meta charset="utf-8">

3 <title>Cities Map</title>

4

5 <!--main stylesheet-->

6 <link rel="stylesheet" href="css/style.css" />

7

8 <!--leaflet stylesheet-->

9 <link rel="stylesheet" href="css/leaflet.css" />

10 <!--[if lte IE 8]>

11 <link rel="stylesheet" href="css/leaflet.ie.css" />

12 <![endif]-->

13 </head>

__

Code Bank 7: Linking to the Leaflet Stylesheets (in: index.html).

__

1 <body>

2 <!--div for the map-->

3 <div id="map"></div>

4

5 <!--libraries-->

6 <script src="js/leaflet-src.js"></script>

7

8 <!--link to main javascript file-->

9 <script src="js/main.js"></script>

10 </body>

__

Code Bank 8: Linking to the Leaflet Script (in: index.html).

You are now ready to load basemap tiles into your webpage using Leaflet! Leaflet allows you to load
tiles from a variety of sources, including those that use OpenStreetMap information such as the
CloudMade Map Styles (http://maps.cloudmade.com/editor) and those available through
commercial services such as ArcGIS Online, Bing!, and Google. An overview of public tile services is
available on the GIS Collective blog: http://giscollective.org/tutorials/web-mapping/wmsthree/.
For Leaflet to use a public tile service, you need to reference the URL using the following syntax:

 http://{s}.acetate.geoiq.com/tiles/acetate/{z}/{x}/{y}.png

Every tile in a slippy map is a separate 256 x 256 pixel image—a .png file in the above example
syntax. The {s} indicates possible server instances from which the map can draw tiles. For each
loaded tile, {z} indicates its zoom level, {x} indicates its horizontal coordinate, and {y} indicates its
vertical coordinate. Near all public tile services use this z/x/y directory format, which was
pioneered by Google. The example syntax above loads the minimalist Acetate tile service
(http://developer.geoiq.com/tools/acetate/) from GeoIQ (now Esri), the same tile service used for
GeoCommons.com; a minimalist tile design is recommended when adding thematic content atop
the basemap tiles.

http://maps.cloudmade.com/editor
http://giscollective.org/tutorials/web-mapping/wmsthree/
http://developer.geoiq.com/tools/acetate/
http://geocommons.com/

Once you have selected a tile service, you need to make four additions to your main.js file in order to
load the selected tile service: (1) Create a global variable to store your map object for subsequent
reference; use the instance name map by convention (Code Bank 9: Lines 1-2); (2) Add the
window.onload event handler to call the custom initialize() function when the page loads
(Code Bank 9: Lines 4-5); (3) complete the initialize() function definition by having it re-

route the execution to the custom setMap() function (Code Bank 9: Lines 7-11); this function
can be used to initialize multiple, linked views (e.g., both a map and linked information graphic, as
with Lab #3); and (4) complete the setMap() function definition (Code Bank 9: Lines 13-26). It
is the setMap() function that leverages the leaflet-src.js code, setting the initial centering and
zoom level of the map (Code Bank 9: Lines 17-18) as well as setting the Acetate tile service for the
basemap, providing proper attribution (Code Bank 9: Lines 20-25).

Comments have been added to Code Bank 9 to explain the purpose of each line of code, including
comment arrows (//<- and //->) that make the flow of execution explicit in main.js. The code
provided in Code Bank 9 is more complicated than the Leaflet Quick Start Guide
(http://leafletjs.com/examples/quick-start.html), but provides necessary structure for future steps
in Lab #1. After adding the code in Code Bank 9 to the main.js file; return to Firefox and refresh the
index.html page; the map <div> now should be populated with the Acetate tileset, including basic
slippy map interactivity (panning + zooming).

__

1 //global variables

2 var map; //map object

3

4 //begin script when window loads

5 window.onload = initialize(); //->

6

7 //the first function called once the html is loaded

8 function initialize(){

9 //<-window.onload

10 setMap(); //->

11 };

12

13 //set basemap parameters

14 function setMap() {

15 //<-initialize()

16

17 //create the map and set its initial view

18 map = L.map('map').setView([38, -94], 4);

19

20 //add the tile layer to the map

21 var layer = L.tileLayer(

22 'http://{s}.acetate.geoiq.com/tiles/acetate/{z}/{x}/{y}.png',

23 {

24 attribution: 'Acetate tileset from GeoIQ'

25 }).addTo(map);

26 };

__

Code Bank 9: Loading a Basemap using Leaflet (in: main.js).

http://leafletjs.com/examples/quick-start.html

Once you have successfully loaded a tileset into your map <div>, the next step is to load the
spatiotemporal information you prepared in the .csv file (located in the data folder) into your
webpage; once loaded, this information is used to draw and animate the proportional symbols atop
the tile service.

Two .js files—drawn from the Open Source community, as with the Leaflet library—are provided
that support the dynamically loading and parsing of your spatiotemporal information:
EventTarget.js and ProcessCSV.js. Together they convert comma separated information into an array
of JavaScript objects, a data structure enclosed by curly braces that contains comma separated
key/value pairs. The .csv information processed by EventTarget.js and ProcessCSV.js is returned to
the main.js script and made accessible by the DOM. Figure 4 illustrates how the information in the
.csv file is converted into JavaScript objects, using the header names of the .csv file as the keys and
populating the cell contents as the attribute values of the JavaScript objects.

Figure 4a: Original .csv File.

[{id=”1”, name=”Atlanta”, latitude=”33.7489”, longitude,=”-

84.3381, 2005=”85”, 2006=”38”, 2007=”75”, 2008=”30”, 2009=”9”,

2010=”15”, 2011=”38”},{id=”2”, name=”Chicago”, latitude=”41.85”,

longitude=”-87.65”, ...]

Figure 4b: Converted JavaScript Objects Accessible in the DOM.

The Open Source software movement is about sharing and collaboration, largely rejecting the use of
strong copyright. Nonetheless, an important standard practice is to give credit to the original
author of any script you incorporate into your final website. You should notice that these files each
have a commented header section that provides attribution; the ProcessCSV.js includes other
comments indicating how the original scripts were modified subsequently by other developers. The
.js files make use of an MIT License (http://opensource.org/licenses/MIT), an open-source software
license that grants the right to freely use and redistribute the software, so long as credit to the
original author is maintained. It is strongly recommend that you add such licensing to your own
scripts generated from G575, and required that you provide proper attribution for the source of
modified scripts.

Note that the filename of each .js file begins with a capital letter. It is convention in the
programming world to begin functions with a lowercase letter and classes with a capital letter. The
JavaScript language does not have true classes, but you can create a pseudo-class using a prototype
function, a generic function that defines specific behaviors for manipulating and returning objects

http://opensource.org/licenses/MIT

sent to the function through the function parameters. Prototype functions are one way to define
behaviors in a format that is reusable both within a single application and across multiple
applications.

Read through ProcessCSV.js (which again uses EventTarget.js) to understand what is happening at
each stage in the flow of execution; the header box provides an executive summary of the script
behaviors. An important trait of a polished web developer the ability to understand and modify
existing code (i.e., customize a script); you will build on this skill incrementally over the course of
the three G575 lab assignments.

To make use of the pair of prototype functions, copy the EventTarget.js and ProcessCSV.js files from
Learn@UW and place them into your js project folder; you now should have four .js files in the js
folder (the pair of prototype functions along with leaflet-src.js and main.js). You need to link to the
pair of prototype functions within the <body> element of index.html, keeping main.js as the last
linked .js file, again because it makes use of code in the prior three (Code Bank 10: Lines 12-13).

__

1 <body>

2 <!--div for the map-->

3 <div id="map"></div>

4

5 <!--libraries-->

6 <script src="js/leaflet-src.js"></script>

7

8 <!--link to CSV prototype functions-->

9 <script src="js/EventTarget.js"></script>

10 <script src="js/ProcessCSV.js"></script>

11

12 <!--link to main javascript file-->

13 <script src="js/main.js"></script>

14 </body>

__

Code Bank 10: Linking to EventTarget.js and ProcessCSV.js (in: index.html).

Return to main.js and first add a global array variable named csvData to store the contents of the
.csv file as an array of JavaScript objects (Code Bank 11); it is recommended that you make this
variable global so that you need to load the .csv file only once. Then add a new function named
processCSV() that makes use of the ProcessCSV.js prototype function in order to populate the
csvData array with the spatiotemporal information in your .csv file (Code Bank 12). The
processCSV() function must be called at the end of the setMap() function (Code Bank 12:
Line 2) so that the .csv file is loaded and drawn only after the map <div> has initialized and the
basemap tileset has been loaded.

__

1 //global variables

2 var map; //map object

3 var csvData; //array of objects

__

Code Bank 11: Adding a Global Variable to Hold the .csv as JavaScript Objects

__

1 function processCSV() {

2 //<-setMap()

3

4 //process the csvData csv file

5 var processCSV = new ProcessCSV(); //-> to ProcessCSV.js

6 var csv = 'data/csvData.csv'; // set location of csv file

7

8 processCSV.addListener("complete", function(){

9 csvData = processCSV.getCSV(); //-> to ProcessCSV.js

10 console.log(csvData);

11 });

12

13 processCSV.process(csv); //-> to ProcessCSV.js

14 };

__

Code Bank 12: Loading a Basemap using Leaflet (in: main.js).

Figure 5: Printing the Loaded CSV Information to the Console.

The processCSV() function begins by creating a new variable instance (named processCSV) of
the ProcessCSV.js prototype using the new keyword followed by a call to the ProcessCSV()
constructor function (Code Bank 12: Line 5). A second, string variable (named csv) is created to
store the relative location of the .csv file in the project directory (Code Bank 12: Line 6). An event
listener then is added to the process processCSV variable to store the processed .csv file in the
global csvData variable (Code Bank 12: Lines 8-11); the .csv file should be converted into
JavaScript objects only after it has completely loaded into the browser, hence the use of the
complete event (Code Bank 12: Line 8). The processCSV() function finishes execution by
calling the process() function in ProcessCSV.js prototype definition, passing the csv string
holding the directory location as the file parameter (Code Bank 12: Line 13).

Note that the event listener includes a statement to print the processed csvData array to the error
console (Code Bank 12: Line 10). Return to Firefox and refresh your webpage. If you have
modified your main.js code correctly, and configured your directory properly, you should see your
complete .csv file printed to the console as an array of JavaScripts objects (Figure 5); clicking on an
individual object navigates to the DOM tab, where you can inspect its properties.

Now that you have your spatiotemporal information loading dynamically into the browser, the next
step is to add symbols atop the loaded tiles using the latitude and longitude coordinates within the
.csv file. Leaflet supports the overlay of map symbols, or markers, using either pre-rendered iconic
point symbols (e.g., in .png format) or dynamically drawn scalable vector graphics (.svg); because
you want to dynamically resize the markers to create proportional symbols, the latter option is
more appropriate for Lab #1 (and thematic mapping generally). The .svg format is now common to
the web, but, as stated in Section 1a, is not supported by older versions of Internet Explorer (before
IE9) without a considerable work-around.

Begin by declaring a global variable of type array named markersArray to hold the complete set
of markers added to the map (Code Bank 13). While each JavaScript object in the csvData array
receives its own unique marker on the map, it is necessary to group these markers into a single
array so that they subsequently can be added or restyled all at once. The markersArray variable
needs to be global so that the map can be animated after first initialized (i.e., so that the
markersArray variable can be accessed using multiple functions).

__

1 //global variables

2 var map; //map object

3 var csvData; //array of objects

4 var markersLayer; //markers layer group object

__

Code Bank 13: Declaring a Global Variable to Hold the Markers (in: main.js).

After declaring the markersArray variable, you then need to define a new function named

createMarkers()that draws the set of .svg markers onto the map (Code Bank 14). The
createMarkers() function should be called from the processCSV() function only after the
csvData array is populated with JavaScript objects (as indicated in Code Bank 14: Line 2); to do

this, replace the console.log() function in the processCSV() function (Code Bank 12: Line
10) with a call to createMarkers().

The createMarkers() function begins by declaring three local variables needed to draw (the
first two variables) or organize (the third variable) the set of markers (Code Bank 14: Lines 4-14).
First, declare an integer variable named r and assign a default value of 10 (Code Bank 14: Lines 4-
5); this value defines the default radius of each marker that later is scaled in proportion to the
attribute value at a given timestamp (see Section 3c). Then, instantiate a new markerStyle
variable in a manner similar to style rules in CSS (but with commas instead of semicolons), setting
the radius (the previously defined r variable, which then can be updated programmatically) and
fillColor (a default blue) similarly for all markers (Code Bank 14: Lines 7-11). You are
encouraged to explore additional style options, as listed under L.Path in the Leaflet API Reference.

__

1 function createMarkers() {

2 //<-processCSV()

3

4 //radius of markers

5 var r = 10;

6

7 //marker style object

8 var markerStyle = {

9 radius: r,

10 fillColor: "#39F",

11 };

12

13 //create array to hold markers

14 var markersArray = [];

15

16 //create a circle marker for each object in the csvData array

17 for (var i=0; i<csvData.length; i++) {

18 var feature = {};

19 feature.properties = csvData[i];

20 var lat = Number(feature.properties.latitude);

21 var lng = Number(feature.properties.longitude);

22 var marker = L.circleMarker([lat,lng], markerStyle);

23 marker.feature = feature;

24 markersArray.push(marker);

25 };

26

27 //create a markers layer with all of the circle markers

28 markersLayer = L.featureGroup(markersArray);

29

30 //add the markers layer to the map

31 markersLayer.addTo(map);

32 }

__

Code Bank 14: Adding Markers to the Map for the Proportional Symbols (in: main.js).

With the trio of variables declared, next create a loop to access individually each JavaScript object
in the csvData array and create an associated marker for placement on the map (Code Bank 14:
Lines 16-25). It does not matter how many objects are included in your csvData array, as the
length of the array (Code Bank 14: Line 17) is used to determine how many times the
conditional block of code is executing before breaking out of the loop (Code Bank 14: Lines 18-

http://leafletjs.com/reference.html#path

24). For each JavaScript object in the csvData array, a local variable named feature is declared
and assigned the values in the associated row (i standing for the current loop index) in the
csvData array as its properties (Code Bank 14: Lines 18-19). The latitude and longitude then
are extracted from the feature properties and stored in local variables lat and long (Code
Bank 14: Lines 20-21); the keys “latitude” and “longitude” must use the same spelling and
capitalization as used for the .csv file header (Figure 1). A new Leaflet circleMarker variable—
named marker—then is created, passing the lat/long coordinates and the previously created
markerStyle as the parameters (Code Bank 14: Line 22); the circleMarker object is used
given the goal of producing a circular proportional symbol map, but is only one of many .svg vector
layers that can be drawn atop the map. The Leaflet marker object is now created, but only contains
the lat/long information. To add the timestamp information, set the local feature variable

previously created as the feature property of the marker (Code Bank 14: Line 23). The
conditional block of code completes by pushing the created marker object into the

markersArray variable (Code Bank 14: Line 24).

Figure 6: Drawing SVG Markers onto the Basemap.

With the markersArray array populated, you then can create the global markersLayer object,
using the populated markersArray variable as the constructor parameter. FeatureGroup is a
prototype function provided by Leaflet for organizing map layers and can be instantiated in long
form (new L.FeatureGroup(markersArray)) or using the alias shortcut (Code Bank 14:
Lines 27-28); refer to L.FeatureGroup in the Leaflet API Reference for details. Finally, use the
addTo() function of FeatureGroup to add the markersLayer variable (and its contents) to the
map object (Code Bank 14: Lines 30-31).

Return to Firefox and refresh your webpage. You know should see .svg vectors drawing atop the
loaded map tiles, positioned according to the latitude and longitude of your mapped features
(Figure 6)!

After drawing the .svg markers to the map, you now need to add the functionality to resize each
marker according to an attribute value. Such a function needs to be applied uniquely to each marker
in the newly created markersLayer variable, as each proportional symbol on your map could
have a different attribute value (i.e., a differently sized proportional symbol), and these attribute
values vary over the included set of timestamps.

The FeatureGroup prototype (of which markersLayer is an instance) extends the
LayerGroup prototype in the Leaflet source code, meaning that it includes all properties and
methods of the LayerGroup definition, as well as several unique properties and functions within
its own definition (refer back to L.LayerGroup in the Leaflet API Reference for details). The
LayerGroup prototype definition includes a useful method named eachLayer(), which applies
a custom method of your own creation to every feature in a FeatureGroup instance (i.e., to every
marker in markersLayer).

To make use of the eachLayer() method to resize your markers, first add a pair of global

variables at the top of main.js: (1) an integer named timestamp that holds the current timestamp
shown on the map (Code Bank 15: Line 5); the timestamp variable should be assigned the
header value of the first timestamp in your .csv file (e.g., the year 2005 from Figure 1); and (2) an

integer named scaleFactor that determines the mathematical scaling ratio of your proportional
symbols (Code Bank 15: Line 5); experiment with different values to identify an optimal scaling
ratio at the smallest cartographic scale (think back to discussion about proportional symbol scaling
in G370). This pair of variables should be global, as you are likely to manipulate them in Lab #2
when implementing cartographic interaction (e.g., enable the user to change the timestamp or the

scaleFactor interactively).

__

1 //global variables

2 var map; //map object

3 var csvData; //array of objects

4 var markersLayer; //markers layer group object

5 var timestamp = 2005; //initial timestamp

6 var scaleFactor = 25; //scale factor for marker area

__

Code Bank 15: Adding Global Variables for Proportional Symbols (in: main.js).

http://leafletjs.com/reference.html#featuregroup
http://leafletjs.com/reference.html#layergroup

After adding the pair of global variables, insert a call to the eachLayer() method at the end of the
createMarkers() function that you defined in Section 3b (Code Bank 14). This function call
should come after the call to markersLayer.addTo(map) (Code Bank 14: Lines 30-31). The
eachlayer() method defines a new function as its parameter, further passing the layer as the
parameter of this new function (Code Bank 16: Lines 5-8). The solution in Code Bank 16 calls yet
a third function named onEachFeature(), also passing it the layer as the parameter. The
onEachFeature()function is included so that the radius of each marker can be updated during
the animation as well as during the initial drawing of the map (see Section 3d); in other words,
having the resizing functionality with the onEachFeature() function allows this code to be
reused multiple times within the script.

Why is this method named eachLayer() and not eachFeature()? Because Leaflet considers

each circleMarker its own layer, the markersLayer is a distinct, composite object holding this

set of layers. The ‘feature’ is the geographic object embedded in the layer variable, while the
layer contains the properties, methods, and events Leaflet gives it to make it visible and

interactive. If you're confused, inspecting the layer group with the console.log() function may
make it clearer.

__

1 function createMarkers() {

2

3 // code from Code Bank 13 removed here for brevity

4

5 //call the function to size each marker and add its popup

6 markersLayer.eachLayer(function(layer) {

7 onEachFeature(layer);//->

8 })

9 }

__

Code Bank 16: Adding a Call to the eachLayer() function (in: main.js).

The final step in resizing the proportional symbols is to define the onEachFeature() function,
which performs the geometric calculations needed to calculate the radius of the scaled proportional
symbol from its attribute value (Code Bank 17). The function first calculates the area of the
symbol by multiplying the attribute value of the layer at the current timestamp—which is

located in the DOM under layer.feature.properties—against the scaleFactor (Code
Bank 17: Lines 4-5). Basic geometry then is applied to convert the area into a radius value,
which is needed for drawing the marker in Leaflet (Code Bank 17: Lines 4-5). The marker then is
redrawn with the newly calculated radius using the setRadius() method of circleMarker
objects in Leaflet (Code Bank 17: Lines 4-5).

Again, onEachFeature() will be called individually for every marker stored in the

markersLayer variable (thus, at least 15 times). A call to console.log() is added at the end of
the onEachFeature() function to print the layer’s properties to the error console. Once you have
added the code from Code Banks 15-17, return to Firefox and refresh the webpage; you should see
the .svg markers scaling proportionately to their attribute values in the first timestamp and see the
complete layer properties printing to the error console (Figure 7).

__

1 function onEachFeature(layer) {

2 //<-createMarkers()

3

4 //calculate the area based on the data for that timestamp

5 var area = layer.feature.properties[timestamp] * scaleFactor;

6

7 //calculate the radius

8 var radius = Math.sqrt(area/Math.PI);

9

10 //set the symbol radius

11 layer.setRadius(radius);

12

13 console.log(layer);

14 }

__

Code Bank 16: Calculating the Radius for Each Proportional Symbol (in: main.js).

Figure 7: Dynamically Scaling the Markers.

The final required step of Lab #1 is animating the proportional symbols. As stated in lecture, while
animation and interaction together are considered a part of “dynamic” cartography, they are
fundamentally different, as animation is a change to the display evoked by the system while
interaction is a change to the display evoked by the user. Lab #2 will build upon the spatiotemporal
visualization developed in Lab #1 by adding interaction.

To animate your proportional symbols, first add two global variables (Code Bank 18: Lines 6-7):
(1) a timer variable that provides the system control for updating the display and (2) a
timerInterval integer that sets the speed (in milliseconds) of the animation. This pair of
variables needs to be global so that animation can be manipulated using interaction (e.g., VCR
controls, a temporal slider bar) in Lab #2.

__

1 //global variables

2 var map; //map object

3 var csvData; //array of objects

4 var timestamp = 2005; //initial timestamp

5 var scaleFactor = 25; //scale factor for marker area

6 var timer; //timer object for animation

7 var timerInterval = 1000; //initial animation speed in milliseconds

__

Code Bank 18: Adding a Global Variable for the Animation (in: main.js).

The animation behavior requires a pair of functions. First, define a new function called
animateMap() that is called at the end of the setMap() function definition (Code Bank 19). The

animateMap() function instantiates the timer variable by calling the setInterval() function
(Code Bank 19: Lines 4-6). The setInterval() function in JavaScript takes two parameters: (1)
a function to be called at a regular interval (a custom function named step()) and (2) the interval
itself (using the global timerInterval variable). What this means is that the custom step()
function is called by the system every 1000 milliseconds (or whatever value you assigned to
timerInterval).

It is the step() function that provides the logic to change the proportional symbols based on a
new timestamp (Code Bank 20). An if-else statement is used to check if the current
timestamp is the last in the animation (Code Bank 20: Lines 4-9); Code Bank 20 “hard codes”
this first and last timestamp values (2005 and 2011 respectively; you need to update these values
based on your assembled .csv file), but this can be determined programmatically using the length

property. If the current timestamp is not the last in the animation, then the timestamp variable is
incremented by one (Code Bank 20: Line 6). If the current timestamp is the last in the animation,
then the timestamp variable is set to the first timestamp, looping the animation (Code Bank 20:
Line 8). Once the timestamp variable is updated, the eachLayer() function of the
markersLayer variable again is called (Code Bank 20: Lines 11-14), effectively removing the
proportional symbols from the map and redrawing them using new radius values.

__

1 function animateMap() {

2 //<-setMap();

3

4 timer = setInterval(function(){

5 step();//->

6 },timerInterval);

7 }

__

Code Bank 19: Adding a Global Variable for the Animation (in: main.js).

__

1 function step(){

2 //<-animateMap()

3

4 //cycle through years

5 if (timestamp < 2011){ //update with last timestamp header

6 timestamp++;

7 } else {

8 timestamp = 2005; //update with first timestamp header

9 };

10

11 //upon changing the timestamp, call onEachFeature to update the display

12 markersLayer.eachLayer(function(layer) {

13 onEachFeature(layer);//->

14 });

15 }

__

Code Bank 20: Adding a Global Variable for the Animation (in: main.js).

Return to Firefox one last time and refresh index.html. You now should have an animated
proportional symbol map, completing the spatiotemporal visualization required for the Lab #1
challenge!

The instructions and code banks in Sections #1-3 provide you with all of the details needed to
prepare your spatiotemporal visualization. You are encouraged to take what you have learned from
these steps and add two legends: one for explaining the meaning of the proportional symbols on the
map and one for explaining the meaning of the temporal animation. You will be awarded two bonus
points for each legend you add on your own, if your solution is fully functional at the time of
submitting Lab #1. Refer to the Slocum textbook for examples of a proportional symbol legend (e.g.,
stacked versus nested) and a temporal animation legend (e.g., a timeline versus a digital clock). You
will be provided with solutions for both after submitting Lab #1, as both legends must be included
in your Lab #2 design.

You are required to upload a .zip of your entire directory to the Learn@UW Lab #1 Dropbox
at least one hour before your lab on February 21st, 2013.

(5) Basemap Tiles (tiles loading with correct scale/centering)
(5) Proportional Symbols (markers added to map that are properly scaled)
(5) Animation (looping through timestamps when loading the webpage)

(1) Appropriate Spatiotemporal Information Set
(1) Overall Consideration of Scenario
(3) Webpage Design (surrounding HTML5/CSS elements)

(+2) Proportional Symbol Legend
(+2) Temporal Animation Legend

