Deep Learning with GPUs

Deep Neural Networks To Enable Real-time Multimessenger Astrophysics (arXiv:1701.00008)

Daniel George

NCSA, University of Illinois at Urbana-Champaign

March 6, 2017

$\operatorname{Normalized Strain}^{3} 2 \\ 1 \\ 0 \\ -1 \\ -2 \\ -3 \\ 0.0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1.0 \\$

Time (s)

Signal Processing

- Extracting signals weaker than noise
- Traditional methods use matched-filtering (template matching)
- We developed a deep learning method trained with these templates

Artificial Neural Networks

Deep Learning

Overview

- Very long networks of artificial neurons (dozens of layers)
- State-of-the-art algorithms for face recognition, object identification, natural language understanding, speech recognition and synthesis, web search engines, self-driving cars, games (Go) etc.

- Does not require hand-crafted features to be extracted first
- Automatic end-to-end learning
- Deeper layers can learn highly abstract functions
- Optimized hardware (GPU/FPGA)

Speed-Up of Analysis

One-time intensive training process

(used Tesla & P100 GPUs at ISL)

Real-time analysis (milliseconds).

Constant time of evaluation regardless of number of templates.

Thousands of inputs can be processed at once on a GPU.

C 1)eep Cc 125x	nvolutiona	l Neural N	etwork (GF	PU)		
-	Dee 95x	ep Convolu	itional Neu	ral Networ	k (CPU)		
N 1	/latched x	ep Convolutional Neural Network (CPU) d–Filtering (CPU) 200 400 600 800 1000					
0	20	00 40	00 60	00 80	0 10	00	
	Speed-up Factor for Inference 5						

Benchmarks for Training Speed-up

CPU is 16-core Intel Haswell E5-2698 2.3 GHz with 3.6 GHz Turbo. GPU is NVIDIA GeForce GTX TITAN X.

Deep Learning Frameworks

- All are optimized to automatically use NVIDIA GPUs
- Developed and/or sponsored by industries (open-source)
- Not optimized for CPUs
- Comparisons between these frameworks:
 <u>https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software</u>

NVIDIA Deep Learning SDK

- **Deep Learning Primitives (cuDNN)**: High-performance building blocks for deep neural network applications including convolutions, activation functions, and tensor transformations
- **Deep Learning Inference Engine (TensorRT)**: High-performance deep learning inference runtime for production deployment
- **Deep Learning for Video Analytics (DeepStream SDK)**: High-level C++ API and runtime for GPU-accelerated transcoding and deep learning inference
- Linear Algebra (cuBLAS): GPU-accelerated BLAS functionality that delivers 6x to 17x faster performance than CPU-only BLAS libraries
- **Sparse Matrix Operations (cuSPARSE)**: GPU-accelerated linear algebra subroutines for sparse matrices that deliver up to 8x faster performance than CPU BLAS (MKL), ideal for applications such as natural language processing
- **Multi-GPU Communication (NCCL)**: Collective communication routines, such as all-gather, reduce, and broadcast that accelerate multi-GPU deep learning training on up to eight GPUs

