NDS@NCSA Hackathon
an experiment in community development

Ray Plante, Matt Turk
National Center for Supercomputing Applications
University of Illinois
Why a hackathon?

• To cultivate a open community of developers
 – Assist with building out needed software
 – Explore requirements for a development framework
 – Inspire innovative ideas

• Envisioning a series of hackathons
 – Gather developers from across the consortium for 2-4 days of side-by-side, collaborative development
 – Establish some open-source projects
 • Collect developer teams around those projects
 • Support continued development beyond meeting
 – Grow participation over time

• Start with a small, informal proto-hackathon
NDS Hackathon at NCSA

• September 17-19, 2014
• External Participants
 – Jim Myers (U of Michigan)
 • SEAD Project enables scientists to create and publish collections
 – Dmitry Mishin (SDSC/JHU)
 • Primary developer for SciDrive, a “Dropbox” for science data
 – Deoyani Nantrekar (JHU)
 • Developer in JHU-IDIES lab
 – Kacper Kowalik (UTexas Austin)
 • Contributing developer to yt community software package
 – Amit Chourasia (SDSC)
 • Leads SEEDME, a service for sharing research results quickly
• NCSA-local developers
 Mario Falarca, Tom Habing, Ray Plante, Tom Redman, Matt Turk, Venkat Yekkirala
• Theme: Can we connect these tools in a useful way?
Winding up the developers

• Before meeting
 – Posted ideas to a Trello page
 (http://trello.com/b/CA66J4cB/september-hackathon)
 – Established NDS presence in open-source repositories
 • Use not required but encouraged
 • GitHub: https://github.com/nds-org
 • BitBucket: https://bitbucket.org/nds-org

• Start of meeting
 – Plante: NDS Context, motivation, NDS framework
 – Developers introduced relevant work
 – Development ideas pitched and discussed

• Development
 – Broke into 2 teams, 1.5 days of development

• Wrap-up
 – Report on results
Thinking about the Framework

Data coming from...
- Lab experiment
- Simulations
- Computations
- Data Mining Service
- Mass data import tool
- Community Instrument

National Data Service Portal

Collection Creation & Sharing Space → Publishing Repository

Publishing Repository → Cross-disciplinary search service

Cross-disciplinary search service → Scholarly Journal

Identity & Group Management

Data Movement & Access Services

Data Metadata → Mass data import tool

NationalDataService.org
Thinking about the Framework

Communities can replace any/all of the vanilla services with specialized versions.

The Framework defines the interfaces to enable interoperability.

Data coming from...

- Lab experiment
- Simulations
- Computations
- Archive data
- Data Mining Service
- Mass data import tool
- Community Instrument
- Large Mission or Project

Lab notebook tool
Access service

Collection Creation & Sharing Space

Project Repository

Publishing Repository

Data Discovery System

Identity & Group Management

Data Movement & Access Services

Scholarly Journal links to data

Data	Metadata

SWORD OAI-ORE
OAI-PMH SHARE

NationalDataService.org
Project 1: Connecting SciDrive to SEAD

• Background
 – SEAD =
 • Provides service for creating publishable collections (via Medici)
 • Delivers collections to one of several possible repositories (via Virtual Archiver)
 – SciDrive
 • “Dropbox” for scientific data
 • Features plugin mechanism for automatically executing operations on data in a folder
 – Used, e.g., to extract metadata, load tables into database

• Scenario
 – Research group uses SciDrive to share data products informally
 – Some metadata for products are extracted/created in SciDrive
 – Want to move data and metadata to SEAD to prepare for publishing

• What we built
 – Plugin for SciDrive for creating and editing metadata
 – Defined simple “standard” for accessing metadata
 • REST service: give PID, get back metadata in JSON-LD format
 – Implemented service in both SciDrive and SEAD
Project 2: Attaching Processing to archived data

• Motivation
 – Emerging Epicyte Pilot (see next talk)
 – Make large simulation result accessible for analysis

• What we built
 – iRODS-based data archive
 – Use ownCloud to pull data from different systems, including Dropbox and SciDrive
 – Docker containers hosting IPython notebooks
 • Uploaded scripts can access portions of simulation data
 – SEEDME storage that can collect analysis products along with viewers and metadata
Shedding light on the framework

• Demonstrated 2 mechanisms for interoperability
 – (simple, well-defined) standards
 • REST API for accessing metadata
 • Exiting standard format: JSON-LD
 – Leveraging existing, non-standard but well-documented APIs
 • ownCloud’s support for multiple storage systems
 • Can aggregate several tools through a few custom connections

• Developer communities can be cultivated around open (source) development