Cross-disciplinary Reuse

Carole L. Palmer Director and Professor Center for Informatics Research in Science & Scholarship Graduate School of Library & Information Science University of Illinois

> After September 1, 2014 Information School University of Washington

NationalDataService.org

cyberinfrastructure

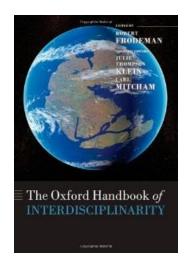
phases & relationships

reusable data resources

dimensions & dependencies

cross-disciplinary access and use

impact & value


NationalDataService.org

New opportunity to get serious about cross-disciplinary cyberinfrastructure

Disciplinary strengths needed for multi-disciplinary research

(Seidel, 2011 e-mail shared with UIUC taskforce)

Greatest challenges for information systems is not ability to move across disciplinary boundaries but in maintaining the increasingly long and mutable intellectual pathsto our disciplinary past.

(Palmer, 2010, Oxford Handbook of Interdisciplinarity)

Studies of long-tail Earth & life sciences

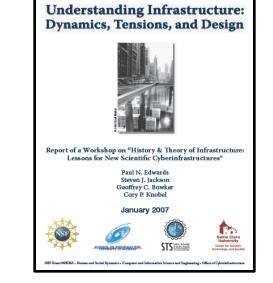
Oceanography Climate science - modern Climate science - paleo Soil ecology Volcanology Stratigraphy Mineralogy Microbiology Sensor network science Environmental engineering Photonics

NationalDataService.org

Infrastructure – phases & relationships

Systems

Networks


Inter-networks

from <u>homogeneous</u>, <u>centralized</u>, local to <u>heterogeneous</u>, <u>distributed</u>, coordinated

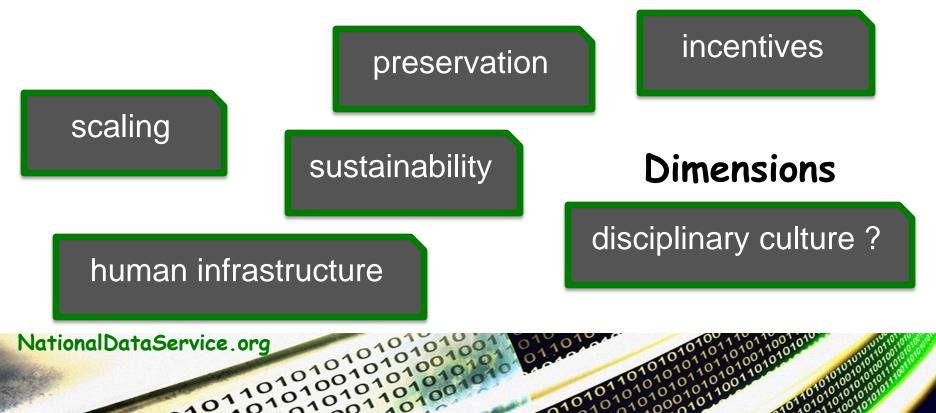
- technology growth and transfer
- consolidation
- gateways for interoperation

RDA explicitly addressing

technical / social – local / global

(Edwards, et al., 2007)

ground-up design; "make-or-break" phase (Parsons & Berman, 2013)


• Early choices constrain options

Infrastructure – reverse salients

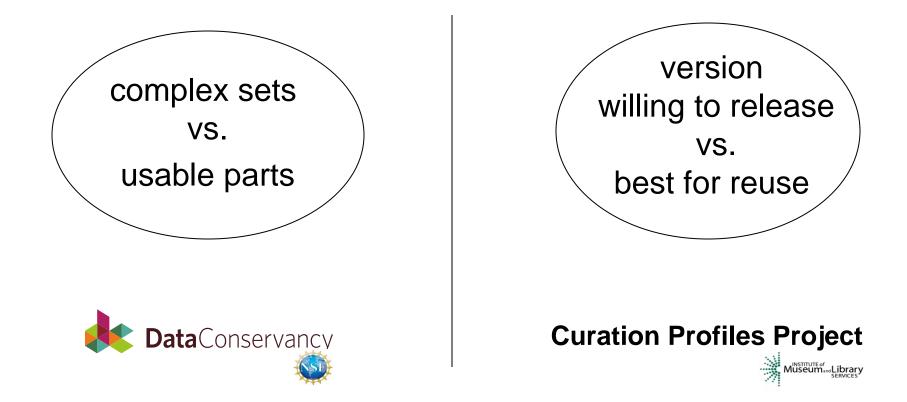
- middleware specifications
- diverse data formats

collecting & standardizing metadata

Paradigm dimension

Four Fourth paradigm S

- Data intensive science not "sweeping away the old reality" for a "paradigm shift in the Kuhnian sense."
- Continuum of modern scientific method includes and extends previous paradigms of empiricism, theory, and computation. (Wilbanks, 2009)
- Weak & strong coupling, dependencies (scoping cyberinfrastructure for combustion research)


Dimensions within and across disciplines

- Open / closed evidentiary cultures within gravitational wave research ("The Meaning of Data "Collins, 1998)
 - What qualifies as a publishable product?
 - Who has responsibility for validity and meaning? lab or research community
- Site-based dimension within and across geologic features (multidisciplinary geobiology)

Spatial – temporal vs. x3 coordinates + altitude at vent

Producer / consumer dimension

Releasable products, meaning for reuse

Use profile for NASA data levels

Raw data	Telemetry data with data embedded	Little use to most of science community, except radio science
Level 0 Edited	Corrected for errors, split into data set for instrument; tagged with time & location	Wide use, especially researchers <u>familiar with</u> <u>instrumentation</u>
Level 1A Calibrated	Corrected and expressed proportional to some physical unit	
Level 1B Resampled	Resampled and possibly calibrated; can't be reconstructed	Wide use, especially for <u>secondary users</u>
Levels 2-5 Derived		General way information transferred

Ball, A. (2010). Review of the State of the Art of the Digital Curation of Research Data.

Access & use across disciplines

Impact on research progress (cases studies in neuroscience)

- <u>Specific</u> information from <u>another field</u>
 <u>greatest impact</u> / uncommon
- Exploring other fields

– moderate impact / frequent

- Background and context for valid application

Rapid review and assessment - cues for "strategic reading" (Renear & Palmer,

2009)

Cross-disciplinary value

Complications with large-scale, quickly growing federations

(Europeana, US national cultural heritage)

small, unique & valuable flooded out by large, homogeneous

representing the whole – coverage, density, gaps

Value indicators for data

Climate / Ocean modeling Soil Ecology Volcanology Stratigraphy Sensor Engineering

- Reputation of data collector
- Spatial coverage
- Longitudinal coverage
- Site factors:

unique conditions, rarely studied, permitting requirements

- Multiple sources for triangluation / context
- Documentation of workflows and provenance

Implications for NDS

• Requirements for reusable, high value data tightly tied to the paradigms and disciplinary strengths and roots.

Particular challenge for institutional repositories

- Invest in disciplinary dimensions, value, functionality
- Metrics of success that account for impact

Acknowledgements

Data Conservancy Data Practices Team

Tiffany Chao Nic Weber Karen Baker Andrea Thomer

Melissa Cragin (now at NSF)

Curation Profiles Project

NationalDataService.org

PI: Scott Brandt, Purdue University

Data Conservancy

Site-Based Data Curation

Co-Pls: Bruce Fouke, IGB, Un. of Illinois
Sayeed Choudhury, Johns Hopkins
Ann Rodman, National Park Service
Team: JHU: Tim DiLauro; Illinois:
Andrea K Thomer, Abigail E. Esenam,
Karen S. Baker, Karen Wickett, Jacob Jett

DCERC

Co-PIs: Mary Marlino (NCAR) Suzi Allard and Carol Tenopir (UTK) Matt Mayernik, Karon Kelly, Cheryl Thompson

PI: Sayeed Choudhury, Johns Hopkins University

1011010101