
National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign

NCSA Software
Open Source Server

Rob Kooper,
Luigi Marini,
Kenton McHenry,
Jong Lee

This presentation is not just
about the technology used
but also about the process
that is followed.

Code

Test

Document Publish

Gather
Feedback

Iterative Development

•  Code to shared repository
•  Artifacts to central

repository

•  Mailing list
•  Code reviews
•  User
•  Bug reports

•  The code
•  The manuals

•  Write new test
•  Check old tests

The process

•  Process described is used by ISDA
•  Including collaborators outside of NCSA

•  Refined over time
•  But can still be improved!

•  Not set in stone
•  Not all projects are the same
•  This might not fit your project
•  We are still learning to do this

What tools do we need?

•  For code
•  Source code management system and code review system

•  Testing
•  Continuous build system with tests

•  Documentation
•  Project Info, Documentation, API documentation

•  Publish
•  Place to download source code and artifacts

•  Feedback
•  Questions, bug tracking system, mailing lists

Available Software Resources

•  Full Atlassian Stack
•  CONFLUENCE, JIRA, STASH, BAMBOO, FISHEYE, CROWD

•  Sonatype Nexus repository
•  Maven artifact repository

•  All available on https://opensource.ncsa.illinois.edu/
•  Intel I7 processor, 2.8Ghz
•  16GB memory
•  1TB of storage (700GB free)
•  Continuous backup using crashplan

Opensource Software 1/2

•  Projects Page
•  https://opensource.ncsa.illinois.edu
•  Custom front end showing all projects

•  CONFLUENCE
•  https://opensource.ncsa.illinois.edu/confluence
•  Wiki

•  JIRA
•  https://opensource.ncsa.illinois.edu/jira
•  Bug tracking software

•  STASH
•  https://opensource.ncsa.illinois.edu/stash
•  Source code management

Opensource Software 2/2

•  BAMBOO (replaced Jenkins)
•  https://opensource.ncsa.illinois.edu/bamboo
•  Continuous build software

•  Questions
•  https://opensource.ncsa.illinois.edu/questions
•  Confluence plugin to ask questions

•  CROWD
•  https://opensource.ncsa.illinois.edu/crowd
•  Account management

•  Nexus
•  https://opensource.ncsa.illinois.edu/nexus
•  Java artifact repository (for use with maven)

Before you begin to code

•  Create a roadmap
•  Group issues together to create a version
•  Pick a release date
•  Can be linked to a milestonre/presentation

•  Create multiple versions into the future
•  Yes things will change
•  But this will tell users what to expect and when

Code

Test

Document Publish

Gather
Feedback

Iterative Development

•  Code to shared repository
•  Artifacts to central

repository

•  Mailing list
•  Code reviews
•  User
•  Bug reports

•  The code
•  The manuals

•  Write new test
•  Check old tests

Source Code Management (SCM)

•  SCM is NOT an option
•  All our code should be in a repository from day 1

•  NO EXCUSES!

•  SCM’s have existed for decades
•  SCCS released in 1972
•  SCCS, RCS, CVS, SVN centralized systems

•  Can have a single server to checkin/checkout from
•  GIT/HG/BAZAAR distributed version control systems

•  developed around same time (2005)
•  Everybody has all code at all times
•  No single master

•  At ISDA we use GIT (and sometimes SVN)

GIT local and remote

http://thkoch2001.github.io/whygitisbetter/

Proposed GIT Workflow

•  Integration manager
•  Many developers cloning central/blessed repository
•  Many developers writing to their own repository
•  Many developers doing pull requests
•  One (or more) people that do code review
•  One (or two) people that can write to blessed repository

http://thkoch2001.github.io/whygitisbetter/

Code

Test

Document Publish

Gather
Feedback

Iterative Development

•  Code to shared repository
•  Artifacts to central

repository

•  Mailing list
•  Code reviews
•  User
•  Bug reports

•  The code
•  The manuals

•  Write new test
•  Check old tests

Testing

•  Create tests early
•  Ideally create a test before you implement

•  Create regression tests
•  Based on a bug create a test, so it does not come back

•  Automatic build system
•  Can build not only main branch but other branches

•  Run tests for every build
•  Builds should fail if tests fail

•  Tests should not require user interaction
•  Tests are run headless on a server

Build Tools

•  Build tools make it easier for others build
•  No more messy readme’s with missing steps

•  Build tools are needed for continuous integration
•  Automatic builds to test compilation of check-ins

•  C/C++ : Make and Makefiles
•  JAVA : Maven and ANT
•  SCALA : SBT

Code

Test

Document Publish

Gather
Feedback

Iterative Development

•  Code to shared repository
•  Artifacts to central

repository

•  Mailing list
•  Code reviews
•  User
•  Bug reports

•  The code
•  The manuals

•  Write new test
•  Check old tests

Documentation

•  Many different parts of documentation
•  Source code comments
•  API of the code
•  Manuals (installation and use)
•  Frequently Asked Questions
•  README (markdown)
•  Video’s (YouTube)

Code

Test

Document Publish

Gather
Feedback

Iterative Development

•  Code to shared repository
•  Artifacts to central

repository

•  Mailing list
•  Code reviews
•  User
•  Bug reports

•  The code
•  The manuals

•  Write new test
•  Check old tests

Sharing

•  Source code is available
•  People can contribute back

•  Artifacts are available
•  Publish to maven repository
•  Builds can be downloaded

Code

Test

Document Publish

Gather
Feedback

Iterative Development

•  Code to shared repository
•  Artifacts to central

repository

•  Mailing list
•  Code reviews
•  User
•  Bug reports

•  The code
•  The manuals

•  Write new test
•  Check old tests

Feeback

•  Bugs and feature requests
•  Questions asked

•  Can lead to bug reports

•  Other people looking at code
•  Better code

•  Sharing stories and questions
•  Fast account creation

•  Sign-up, file bug, no waiting

•  Mailing lists
•  opensource+ergo@ncsa.illinois.edu

•  Chat rooms

How do I get access?

•  Register for an account
•  Signup at the confluence page

•  Ask for a project
•  Need OpenSource license (NCSA OpenSource)
•  Need Title and KEY
•  Short description

•  What do you get
•  Project in stash
•  Project in JIRA
•  Project in Confluence
•  Groups in Crowd (admin, dev, users, alumni)

DEMO

•  https://opensource.ncsa.illinois.edu/

•  Example Medici (key MMDB)
•  Project Page
•  JIRA (Issue MMDB-1542)
•  Stash (Pull Request 64)
•  Bamboo builds (Branch Build)

•  Example Polyglot (key POL)
•  Project Page
•  API Documentation

Questions?

•  Send email to
•  opensource@ncsa.illinois.edu

•  Or check it out at
•  https://opensource.ncsa.illinois.edu

•  Rob Kooper (kooper@illinois.edu)
•  Luigi Marini (lmarini@illinois.edu)
•  Jong Lee (jonglee1@illinois.edu)
•  Kenton McHenry (mchenry@illinois.edu)

