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This presentation is not just 
about the technology used 
but also about the process 
that is followed. 
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The process 

•  Process described is used by ISDA 
•  Including collaborators outside of NCSA 

•  Refined over time 
•  But can still be improved! 

•  Not set in stone 
•  Not all projects are the same 
•  This might not fit your project 
•  We are still learning to do this 



What tools do we need? 

•  For code 
•  Source code management system and code review system 

•  Testing 
•  Continuous build system with tests 

•  Documentation 
•  Project Info, Documentation, API documentation 

•  Publish 
•  Place to download source code and artifacts 

•  Feedback 
•  Questions, bug tracking system, mailing lists 



Available Software Resources 

•  Full Atlassian Stack 
•  CONFLUENCE, JIRA, STASH, BAMBOO, FISHEYE, CROWD 

•  Sonatype Nexus repository 
•  Maven artifact repository 

•  All available on https://opensource.ncsa.illinois.edu/ 
•  Intel I7 processor, 2.8Ghz 
•  16GB memory 
•  1TB of storage (700GB free) 
•  Continuous backup using crashplan 



Opensource Software 1/2 

•  Projects Page 
•  https://opensource.ncsa.illinois.edu 
•  Custom front end showing all projects 

•  CONFLUENCE 
•  https://opensource.ncsa.illinois.edu/confluence 
•  Wiki 

•  JIRA 
•  https://opensource.ncsa.illinois.edu/jira 
•  Bug tracking software 

•  STASH 
•  https://opensource.ncsa.illinois.edu/stash 
•  Source code management 



Opensource Software 2/2 

•  BAMBOO (replaced Jenkins) 
•  https://opensource.ncsa.illinois.edu/bamboo 
•  Continuous build software 

•  Questions 
•  https://opensource.ncsa.illinois.edu/questions 
•  Confluence plugin to ask questions 

•  CROWD 
•  https://opensource.ncsa.illinois.edu/crowd 
•  Account management 

•  Nexus 
•  https://opensource.ncsa.illinois.edu/nexus 
•  Java artifact repository (for use with maven) 



Before you begin to code 

•  Create a roadmap 
•  Group issues together to create a version 
•  Pick a release date 
•  Can be linked to a milestonre/presentation 

•  Create multiple versions into the future 
•  Yes things will change 
•  But this will tell users what to expect and when 
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Source Code Management (SCM) 

•  SCM is NOT an option 
•  All our code should be in a repository from day 1 

•  NO EXCUSES! 

•  SCM’s have existed for decades 
•  SCCS released in 1972 
•  SCCS, RCS, CVS, SVN centralized systems 

•  Can have a single server to checkin/checkout from 
•  GIT/HG/BAZAAR distributed version control systems 

•  developed around same time (2005) 
•  Everybody has all code at all times 
•  No single master 

•  At ISDA we use GIT (and sometimes SVN) 



GIT local and remote 

http://thkoch2001.github.io/whygitisbetter/ 



Proposed GIT Workflow 

•  Integration manager 
•  Many developers cloning central/blessed repository 
•  Many developers writing to their own repository 
•  Many developers doing pull requests 
•  One (or more) people that do code review 
•  One (or two) people that can write to blessed repository 

http://thkoch2001.github.io/whygitisbetter/ 
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Testing 

•  Create tests early 
•  Ideally create a test before you implement 

•  Create regression tests 
•  Based on a bug create a test, so it does not come back 

•  Automatic build system 
•  Can build not only main branch but other branches 

•  Run tests for every build 
•  Builds should fail if tests fail 

•  Tests should not require user interaction 
•  Tests are run headless on a server 



Build Tools 

•  Build tools make it easier for others build 
•  No more messy readme’s with missing steps 

•  Build tools are needed for continuous integration 
•  Automatic builds to test compilation of check-ins 

•  C/C++ : Make and Makefiles 
•  JAVA : Maven and ANT 
•  SCALA : SBT 
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Documentation 

•  Many different parts of documentation 
•  Source code comments 
•  API of the code 
•  Manuals (installation and use) 
•  Frequently Asked Questions 
•  README (markdown) 
•  Video’s (YouTube) 
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Sharing 

•  Source code is available 
•  People can contribute back 

•  Artifacts are available 
•  Publish to maven repository 
•  Builds can be downloaded 
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Feeback 

•  Bugs and feature requests 
•  Questions asked 

•  Can lead to bug reports 

•  Other people looking at code 
•  Better code 

•  Sharing stories and questions 
•  Fast account creation 

•  Sign-up, file bug, no waiting 

•  Mailing lists 
•  opensource+ergo@ncsa.illinois.edu 

•  Chat rooms 



How do I get access? 

•  Register for an account 
•  Signup at the confluence page 

•  Ask for a project 
•  Need OpenSource license (NCSA OpenSource) 
•  Need Title and KEY 
•  Short description 

•  What do you get 
•  Project in stash 
•  Project in JIRA 
•  Project in Confluence 
•  Groups in Crowd (admin, dev, users, alumni) 



DEMO 

•  https://opensource.ncsa.illinois.edu/ 

•  Example Medici (key MMDB) 
•  Project Page 
•  JIRA (Issue MMDB-1542) 
•  Stash (Pull Request 64) 
•  Bamboo builds (Branch Build) 

•  Example Polyglot (key POL) 
•  Project Page 
•  API Documentation 



Questions? 

•  Send email to 
•  opensource@ncsa.illinois.edu 

•  Or check it out at  
•  https://opensource.ncsa.illinois.edu 

•  Rob Kooper (kooper@illinois.edu) 
•  Luigi Marini (lmarini@illinois.edu) 
•  Jong Lee (jonglee1@illinois.edu) 
•  Kenton McHenry (mchenry@illinois.edu) 


