AAAAAAAAAAAAAAAAAA

Thinking Past POSIX:
Persistent Storage in Extreme Scale Systems

Rob Ross, Phil Carns, Kevin Harms, Dries Kimpe,

Rob Latham, and Sumit Narayan
Argonne National Laboratory
rross@mcs.anl.gov

(Some) Collaborators:
Lee Ward (SNL) Brad Settlemyer, Steve Poole (ORNL)
Anthony Skjellum (UAB) Richard Brooks (Clemson)
Narasimha Reddy (TAMU) C. Karakoyunlu, J. Chandy (UConn)
Dave Goodell (now at Cisco)

@é‘ U.S. DEPARTMENT OF
(&) ENERGY

What’s wrong with POSIX?

Data Model — difficult to map complex, distributed data sets
into single “stream of bytes”

Storage Model — no notion of locality

Consistency — very strong consistency forces heavy-weight
algorithms, makes it difficult to extract high performance

What’s wrong with today’s parallel file systems?

Expensive — typically rely on expensive underlying hardware
Inflexible — not built to support a variety of application
abstractions

Fragile — poor fault handling

Inefficient — poorly utilize new fast devices, heavy-weight
consistency management (arguably this last isn’t their fault)

What are we doing?

= |nvestigating arch. and models for extreme scale storage
— Applicable across many domains
— Learning what other communities have already learned
= Building some things
— Tools for observing 1/0 behavior
— Simulations of critical components
— A prototype and upper layers for demonstration of concepts
= Releasing code as open source

— Some components available already
— More as things mature

= Today I’'m going to just talk about our work in progress
extreme scale storage system

Common Capabilities in Data/Storage Products

Scalability

Fault Tolerance
Concurrent Writes
Synchronization
Primitives

Layout Control
Record Oriented
Data Affinity

Parallel File System

AN Concurrent Reads

AN Atomicity

Lustre, GPFS, Panasas, PVFS, Ceph 4 ~ o/
,S\Irzl;go?vtggczcsvzzrsagfvteway v /7 4

lliln:;olt)jod/l-jlf)el-'s, Google GFS o v/ v

g;x{J\rI:cI; i‘c?:sc:;s dra, Hyperdex v o/ v v v v
NoSQL Database 2027 a, P

MongoDB, BigQuery
With help from C. Karakoyunlu (UConn).

A Clean Slate...

= User View
— Data model —what is stored
— Storage model — view of the system and components
— Consistency model — what is guaranteed

= Architecture
— Communication
— Distribution mechanism(s) — enabling concurrency
— Resilience mechanism(s) — ensuring data integrity and accessibility
— Consistency mechanism(s) — enforcing consistency model
— Security mechanism(s) — protecting data from undesired access
— Local storage management — mapping data to devices

= Lots of viable design points...

> View
“User” V

User View

= Provide a flexible “substrate” for development of extreme

scale data services
— Not particularly things that look like file systems
— Keyword/value
— Bulk data
— Multiple streams from single application
— Consistency model that rewards good behavior

= “User” isn’t the end user
— Envision software layers atop that map to domain of interest

= Pursuing an object-based storage approach
— Alternative to block-based (or file-based) storage
— Objects are logical collections of bytes with identifiers
— Component that exposes object APl is responsible for mapping to HW

PnetCDF Mapping to Objects

Variables mapped into distinct objects. Resizing of one variable
has no impact on others.

Metadata AN
- hame L i
- date :
- seed

= var 1 =

. Logical pNetCDF Dataset var2

: per-variable ;
distribution functions

PLFS Mapping to Objects

Data from a process lands in a unique object; overhead to
create objects much lower than overhead to create files.

Per-process State
hostA hostB

Global Application State RR - -

S

foo

fo0 Object Store

idice data objets

Data Model
Storage System Container Object Fork

Collection of containers Collection of objects Collection of forks Collection of Records
ey oTTTTEEEEEEEEEEEE T pTTTTEEEEEEEEEE e EEEm Y g EEEEEE e m e
4 \ : el b ~ |
(R 4 ¥ 5 3,V2,2,"aa"N |
ok B (ol - S i e
() § ‘. @ ------- i -
_ BN N A et R S

Record :

--

record content (array of bytes)

— length of the record content (integer)
— version number of the record (integer)
| record key (integer)

Note: This is a somewhat arbitrary number of “levels”...

10

Data Model Operations and Consistency

= Alimited set of operations:
— Write: overwrite one or more records (atomic)
— Read: retrieve one or more records (including metadata)
— Probe: only retrieve metadata (version and length etc.)
— Reset: Sets the entity back to the default state (i.e. "erase’)

= Versions:
— Client generally provides (record granular) version number;
API also supports auto increment
— Version is used to order transactions (no retrieval of obsolete versions)
— Write, read and punch support conditional execution based on the
expected version

11

Updating with Conditionals

Algorithm:
) = Augment storage to provide write
C1 C2 '2 conditional | |
o " Read returns version associated
= with record
read >y = Write is conditional on match of
1lva 4 o
<= read p= - version at server
1lva
cwrite(2,v4,v5)| Not
e otes:.
|_2v5 = Optimistic: No significant
OK h h .
< cwrite(2vays) | overhead when there is no
tf;ﬁ contention (other than storing
. —> versions)
cwrite(3,v5,v6) | = No state shared between clients
3 and servers, simplifies fault
) v6 .
£ < OK handling
\ ¢ Y = Not necessarily fair when

contention occurs

12

User View Wrapup

= Object model isn’t all that controversial, really

= Optimizations for “strings of one byte records” make this
efficient for byte streams

= Records make it possible to map key:value stores naturally

= Goal is a single model that is broadly applicable

= QOpen questions:

— Do we really need forks?
* Or, do we need more flexibility in depth of hierarchy?

— Will we need “privileged” forks or records to store things like security
information?

— Can breadth of use cases be supported with only one or two
implementations?
e Or will there be a performance portability problem when moving between?

— Do we need distributed transactions?

13

Architecture

Storage Service Architectures

= Communication

= Data distribution

= Resilience

= Consistency

= Security

" Local storage management

= Assumptions:
— For cost reasons, we have a set of servers with local storage attached
— Object data model described previously

15

Communication

= Most persistent services are built using RPC

= Most RPC systems weren’t designed for HPC (or even modern)
iInterconnects

= Mercury RPC project addressing this

— http://trac.mcs.anl.gov/projects/mercury
— Jerome Soumagne (The HDF Group) leading development

= More on this tomorrow from Dries!

16

Replication and Consistency

" Primary-copy with a twist

= All writes are assigned a unique transaction number (scoped

to an object, distinct from versions in data model)
— Txn numbers are stored persistently with object

— Defines an ordering to determine which write “wins” if there is overlap

= All writes are atomic

— The txn number defines the scope of the atomic write operation
— An entire write is visible to readers completely or not at all

= Data can be applied or relayed in any order

A, B, and C are concurrent updates to the same object

A txXn number: 1
B txn number: 2
C txn number: 3

Application
write Workload\

T~

ObJect has 1, 3

Object has 1, 2

Object has 2, 3

17

Semantics Across Replicas (Bonus Material)

= Previous slide looks like eventual consistency (plus some features)
But we are going one step further, based on Pu’s Epsilon
Serializability ESR rules
— COMMU or RITU replica control
— Writes can be applied in any order at each replica
— Eventual consistency (determined by txn number)
— But with strict rules bounding divergence!
= What are the bounds in Triton? By default:
— Rleplicas can diverge as long as concurrent operations are in progress from
clients
— Once a write completes from client perspective, it is guaranteed to be
visible and in correct order relative to any subsequent reads or writes
= Strong enough for MPI-10 and PVFS semantics, but loose enough to
prevent serialization during write bursts
All replicas consistent if client does “writes(); barrier(); read();”
" Tunable semantics with minor tweaks to protocol:
— Tighten by serializing reads and writes at master server (more expensive)

— Loosen by allowing different (or no) bounds on eventual consistency (less
expensive)

Data Placement

= At a high level, we are either:
— algorithmically placing data (objects and ECC/replicas), or
— Placing data in an unstructured manner

= Algorithmic distribution
— Simplifies metadata, makes things easy to find
— Limits flexibility of placement
(although you can perhaps pick IDs that go where you want)
— Can simplify triage (determining impact of a fault)
* Need to be able to reason about what could have been on a server

= Unstructured distribution
— Provides great flexibility in placement (put things wherever you want)
— Requires either indexing or searching to find things
— Similarly requires indexing for triage, or routine scanning

19

Resilience and Algorithmic Data Placement

Servers (grey) are Obijects (red) are likewise For a replicated In the event of a server
arranged in an n- addressed by an ID in this object, replicas are failure, the object will
dimensional address space. The primary for an placed on the k-1 be re-replicated to the
space and referenced object is located at the next closest servers next closest server in
by an ID in that server with the closest ID in the address space. the address space.
space. Here, n=1. in the address space.
9 9 9
0 0 % 0 2 0 .X
10 10 10 10
80 80 80 80
30 30 30 30
60 ., 60 ., 60 ¢ 60 ¢

Data Distribution and Rebuild Behavior

Looking at how triage (what needs fixing) and rebuild (fixing it)
proceed using different schemes for distributing replicas in distributed
storage. :
= 192 servers

= 1 server fails

= What happens?

153
S S
&

s

Arcs represent servers that
sent/received data.

Ribbons indicate data
movement (color indicates
source).

Orange bar depicts triage
time.

Blue bar depicts rebuild
time.

a 21

Algorithms and Distribution of Work

g . § s

79899 0 1 11010;
130405969 20304,
10192% 2060y,
990

%
%
3
%
800 2
g
7000]
H
6000 = 8
El
5 =0 9
8 g
501 H
s
s
4000 N
s
s
s
200

1 i
I B
? <34 1
é’*’va% Qg!!!”]
?«aszzzzzn 21 § o

a8
o
01, wms""‘“
90193988 8794858282528)
o RN 0 i,
Py B 2103 44,

o RIS PR RPN
RS AL Y

R R
SR\ WLLIT T 9
¢ ~°~”’:‘\\‘\\\\\ "I';‘&
/)
7,

sk
B ‘\

Yo, fUlmyqmm e

L,
w o, " e
010 sz 17y s O eS

Looking for balance of rebuild, limited rebuild time, limited perturbation of

system, and also ability to place data and coordinate concurrent 1/0.
s Y

22

Architecture Wrapup

= | thought that | would be short on time by this slide, so | didn’t

discuss security or local storage
— Security model looks like the LWFS security model
— Local storage is log based:

P. Carns, R. Ross, and S. Lang. Object Storage Semantics for Replicated Concurrent-Writer File
Systems. In Proceedings of the Workshop on Interfaces and Abstractions for Scientific Data Storage.
September 2010.

= Current work is focusing on finding the “right” distribution
algorithms for expected system sizes, object characteristics,
and fault rates

= Sort of a mash-up of Dynamo (Cassandra, Riak), Pu’s Epsilon
Serializability, and distributed object storage

23

Known Unknowns

Storage Model: Topology and Device Properties

= System must expose properties and allow for tuning
= Approaches like CRUSH incorporate some notion of topology

and an ability to non-uniformly distribute data
— But difficult to guarantee even placement when needed
— And no notion of device performance in model

- BG/P Tree Ethernet InfiniBand Serial ATA

I/O Forwarding §‘*“-~__‘

Software

L —

=
-
\ — T]

Compute nodes IO nodes File servers Enterprise storage

Burst buffers are just the beginning of more complex storage hierarchies.

25

Distributed Transactions

= Other teams seem convinced that distributed transactions are
necessary.
= Are we missing

something? /O Epochs
Consistency and Integrity

« Guarantee required on any and all failures
Foundational component of system resilience

 Required at all levels of the I/0 stack

Metadata at one level is data
to the level below

Transactions

No blocking protocols
« Non-blocking on each OSD
 Non-blocking across OSDs

|/0 Epochs demark globally consistent snapshots
« Guarantee all updates in one epoch are atomic

 Recovery == roll back to last globally persistent epoch
Roll forward using client replay logs for transparent fault handling

« Cull old epochs when next epoch persistent on all OSDs

Fast Forward 1/0 and Storage High Performance Data Division intel'

Eric Barton, “Fast Forward |I/O & Storage,” PDSW 2012, November 2012.
S 26

Big Picture

= Coordination
— See Matthieu’s talk tomorrow morning
= Optimization and adaptivity
— See Babak’s talk tomorrow morning, and
— Emmanuel’s talk on Wednesday morning
= Resilience
— See mini workshop talks tomorrow

27

For more information ...

C. Karakoyunlu, D. Kimpe, P. Carns, K. Harms, R. Ross, and L. Ward. Towards a
unified object storage foundation for scalable storage systems. In Proceedings of
the Fifth Workshop on Interfaces and Architectures for Scientific Data Storage
(IASDS), September 2013.

J. Soumagne, D. Kimpe, J. Zounmevo, M. Chaarawi, Q. Koziol, A. Afsahi, and R.
Ross. Mercury: Enabling remote procedure call for high-performance computing.
In Proceedings of the IEEE Cluster Conference, September 2013.

D. Goodell, S. J. Kim, R. Latham, M. Kandemir, and R. Ross. An evolutionary path to
object storage access. In Proceedings of the 7th Parallel Data Storage Workshop
(PDSW 2012), Salt Lake City, UT, November 2012.

P. Carns, K. Harms, D. Kimpe, J. M. Wozniak, R. Ross, L. Ward, M. Curry, R. Klundt,
G. Danielson, C. Karakoyunlu, et al. A case for optimistic coordination in HPC
storage systems. PDSW 2012, November 2012.

D. Kimpe, P. Carns, K. Harms, J. M. Wozniak, S. Lang, and R. Ross. AESOP:
Expressing concurrency in high-performance system software. In Proceedings of
the 7th International Conference on Networking, Architecture and Storage (NAS),
pages 303—312, Fujian, China, June 2012.

P. Carns, R. Ross, and S. Lang. Object storage semantics for replicated concurrent-
writer file systems. In Proceedings of the Workshop on Interfaces and Abstractions
for Scientific Data Storage, September 2010.

28

Acknowledgments

This research was in part supported by the United States
Department of Defense and by the Office of Advanced Scientific

Computing Research, Office of Science, of the U.S. Department
of Energy.

29

