
Current challenges for parallel
graph (re)partitioning and
(re)mapping
François Pellegrini

EQUIPE PROJET
BACCHUS
Bordeaux

Sud-Ouest 25/11/2013

Outline of the talk

• Context

• The issues at stake

• The parallel mapping problem

• The parallel remapping problem

• Potential collaborations within JLESC

Context

The Scotch project

• Toolbox of graph partitioning, static mapping and
clustering methods

• Sequential Scotch library
• Graph and mesh partitioning
• Static mapping (edge dilation)
• Graph and mesh reordering
• Graph repartitioning and remapping [v6.0]

• Parallel PT-Scotch library

• Graph partitioning (edge)
• Static mapping (edge dilation) [v6.1]
• Graph reordering
• Graph repartitioning and remapping [v6.1]

Roadmaps

• Purpose : devise robust parallel graph partitioning methods

• Old roadmap:
• Should handle graphs of more than a billion vertices

distributed across one thousand processors
• Done, by means of a traditional SPMD MPI model

• New roadmap: to be able to map graphs of about a trillion
vertices spread across a million processing elements
• Same number of vertices per processing element as in

the first roadmap
• Focus on scalability problems related to the large

number of processors
• Parallel dynamic repartitioning capabilities are

mandatory

The issues at stake

Three challenges

• Scalability

• How will the algorithms behave for large numbers of
processing elements?

• Heterogeneity

• How will the architecture of the target machine impact
performance?

• Asynchronicity

• Will our algorithms still be able to rely on fast collective
communication?

Design constraints

• Parallel algorithms have to be carefully designed
• Algorithms for distributed memory machines
• Preserve independence between the number of parts

k and the number of processing elements P on which
algorithms are to be executed

• Algorithms must be “quasi-linear” in |V| and / or |E|
– Constants should be kept small

• Data structures must be scalable:

• In |V| and/or |E| : graph data must not be duplicated

• In P and k : arrays in k|V| , k2, kP, P|V| or P2 are
forbidden

Architectural considerations matter

• Upcoming machines comprise very large numbers of
processing units, and are based on NUMA / heterogeneous
architectures
• A million processing elements will soon become

common

• Impacts on our research :
• Target architecture has to be taken into account
• Do static mapping and not only graph partitioning

– Reduces number of neighbors and improves
communication locality, at the expense of slight
increase in message sizes

Mapping

• Compute a mapping of V(S) and E(S) of source graph S to
V(T) and E(T) of target architecture graph T, respectively

• Communication cost function accounts for distance

S

T

• Static mapping features are
already present in the sequential
Scotch library
• We try to go parallel

[Sébastien Fourestier's PhD]

The parallel mapping problem

Recursive bi-mapping

• Partial cost function for recursive bipartitioning

• Decision depends on available mapping information

Parallel static mapping (1)

1

2

4

3

• Recursive bi-mapping cannot be parallelized as is
• All subgraphs at some level are supposed to be processed

simultaneously for parallel efficiency

• Yet, ignoring decisions in neighboring subgraphs can lead to
“twists”

• Sequential processing only!

Parallel static mapping (2)

• Parallel multilevel framework for static mapping
• Parallel coarsening and k-way mapping refinement

• Initial mapping by sequential recursive bi-mapping

Issues

• The coarsest graph must comprise at least as many
vertices as the number of parts into which to partition the
graph
• For millions of parts, the coarsest graph may not fit in

the processing element memory
• Sequential partitioning time may become too high

• Need for multi-step, multilevel algorithms that compute
partitions on k' << k, then add more parts while
uncoarsening

• Yet the problem of “twists” remains !
– But not so important for hierarchical machines...

• Collective communications may become too expensive

The parallel remapping problem

Parallel dynamic remapping
• Two approaches for remapping

• Scratch-remap methods
• Iterative methods

Scratch-remap method (1)
• Bias cut cost function with fictitious edges [Devine et al.]

• Uses a k-way multilevel framework
• Initial mapping is computed sequentially (no twists !)

• Take dilation into account during k-way refinement

• Sequential initial task may become too large some day

Scratch-remap method (2)
• Issues

• Load imbalance is globally handled

• Cost of remapping amounts to the cost of mapping

Iterative methods
• Flow data from overloaded processing elements to under-

loaded ones

• Issues
• Number of steps depends on quotient graph diameter

• Some global knowledge still has to be collected

• What about hierarchical iterative methods ?
– May require as much work as scratch-remap methods

Asynchronous algorithms

• Need for algorithms that can evolve asynchronously at
different paces depending on communication latency
• Genetic algorithms are good candidates at a global

level but are still too slow to converge
• Diffusion-based methods can be envisioned

– Most probably on the form of influence methods
• Will impose to reconsider software architecture

• Thread-based model ?
• Trade off communication for better load balance

Potential collaborations with
JLPC partners

Among others...

• Mapping / remapping

• Architecture aware load balancing

• At MPI and / or environment (Charm++) and / or
application levels

– Power-aware load balancing
• Multi-phase mapping

• OpenAtom / Charm++ ?
• Clustering

• Fault resilience

Thank you for your attention !
Any questions ?

http://scotch.gforge.inria.fr/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

