Current challenges for parallel
graph (re)partitioning and
(re)mapping

Francois Pellegrini

EQUIPE PROJET
BACCHUS

Bordeaux
Sud-Ouest

25/11/2013

Outline of the talk

e Context

 The issues at stake

* The parallel mapping problem

* The parallel remapping problem
 Potential collaborations within JLESC

Context

P e

Thef

« Toolbox of graph partitioning, static mapping and
clustering methods

» Sequential KGR ibrary
Graph and mesh partitioning
Static mapping (edge dilation)
Graph and mesh reordering
Graph repartitining and remapping [v6.0]

» Paralle i -
Graph partitioning (edge) -~ “\
Static mapping (edge dilation) [v6.1] xﬂ
Graph reordering - x

Graph repartitioning and remapping [v6.1]

Roadmaps

* Purpose : devise robust parallel graph partitioning methods

e Old roadmap:
e Should handle graphs of more than a billion vertices
distributed across one thousand processors

* Done, by means of a traditional SPMD MPI model

 New roadmap: to be able to map graphs of about a trillion
vertices spread across a million processing elements
e Same number of vertices per processing element as in
the first roadmap

* Focus on scalability problems related to the large
number of processors

e Parallel dynamic repartitioning capabilities are

mandatory
. ébu&,—-

The Issues at stake

P e

Three challenges

o Scalability

How will the algorithms behave for large numbers of
processing elements?

* Heterogeneity

How will the architecture of the target machine impact
performance?

e Asynchronicity

Will our algorithms still be able to rely on fast collective
communication?

Design constraints

e Parallel algorithms have to be carefully designed
Algorithms for distributed memory machines

Preserve independence between the number of parts
k and the number of processing elements P on which
algorithms are to be executed

Algorithms must be “quasi-linear” in [V| and / or |E]
Constants should be kept small
e Data structures must be scalable:

In |V| and/or |E| : graph data must not be duplicated

In P and k : arrays in k|V| , k’, kP, P|V| or P* are
forbidden

Architectural considerations matter

« Upcoming machines comprise very large numbers of
processing units, and are based on NUMA / heterogeneous

architectures
A million processing elements will soon become

commaon

e Impacts on our research :
Target architecture has to be taken into account

Do static mapping and not only graph partitioning

Reduces number of neighbors and improves
communication locality, at the expense of slight
INncrease in message sizes

Mapping

 Compute a mapping of V(S) and E(S) of source graph S to
V(T) and E(T) of target architecture graph T, respectively

fC‘(Tq 75 Ps, T) = Z W(ES) |PS,T(€S)|

BQEE(S)
« Communication cost function accounts for distance

e Static mapping features are S
present in the sequential

Scaotch NNERY H N

~

We try to go parallel R
[Sébastien Fourestier's PhD] g T

The parallel mapping problem

P e

Recursive bi-mapping

« Partial cost function for recursive bipartitioning
fe(Tsrs psr) = Z w({v,v'}) |ps,r({v, v' })]

v € V{57)
{v, v’} € E(S)

Parallel static mapping (1)

* Recursive bi-mapping cannot be parallelized as is
* All subgraphs at some level are supposed to be processed
simultaneously for parallel efficiency

* Yet, ignoring decisions in neighboring subgraphs can lead to
“twists”

>,

/N AN
AN N [T

» Sequential processing only!

I&Lu&.—

Parallel static mapping (2)

« Parallel multilevel framework for static mapping
» Parallel coarsening and k-way mapping refinement

Issues

 The coarsest graph must comprise at least as many
vertices as the number of parts into which to partition the
graph
* For millions of parts, the coarsest graph may not fit in
the processing element memory

e Sequential partitioning time may become too high

* Need for multi-step, multilevel algorithms that compute
partitions on k' << k, then add more parts while
uncoarsening

* Yet the problem of “twists” remains !
— But not so important for hierarchical machines...
« Collective communications may become too expensive

I‘m&*-—

The parallel remapping problem

P e

Parallel dynamic remapping

 Two approaches for remapping
Scratch-remap methods

lterative methods

Scratch-remap method (1)

e Bias cut cost function with fictitious edges [Devine et al.|

Uses a k-way multilevel framework
Initial mapping is computed sequentially (no twists !)

Take dilation into account during k-way refinement
Sequential initial task may become too large some day

Add fictives Recursive Initial

edges blmapplng k- partltlon 24
2SR 2SS AR

B 3

Scratch-remap method (2)

e |ssues
Load imbalance is globally handled

Cost of remapping amounts to the cost of mapping

lterative methods

* Flow data from overloaded processing elements to under-
loaded ones

e |Ssues
Number of steps depends on quotient graph diameter

Some global knowledge still has to be collected
What about hierarchical iterative methods ?
May require as much work as scratch-remap methods

Asynchronous algorithms

* Need for algorithms that can evolve asynchronously at
different paces depending on communication latency

e Genetic algorithms are good candidates at a global
level but are still too slow to converge

e Diffusion-based methods can be envisioned
— Most probably on the form of influence methods
« Will impose to reconsider software architecture
 Thread-based model ?

 Trade off communication for better load balance

Potential collaborations with
JLPC partners

P e

Among others...

 Mapping / remapping
e Architecture aware load balancing

e At MPI and / or environment (Charm++) and / or
application levels

— Power-aware |load balancing
« Multi-phase mapping
e OpenAtom / Charm++ ?
« Clustering
e Fault resilience

Thank you for your attention !

Any questions ?

http://scotch.gforge.inria.fr/

—

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

